KEVIN'S WEBSURFER HANDBOOK I FOR CRYSTAL RADIO

A CATALOG OF CRYSTAL HOOK-UPS

Kevin Smith 2009 rev 2015

Notes:

Printing / Binding Instructions

- 1. Choose "fit to page" in print menu
- 2. Print document double sided on letter size paper
- 3. Cut the entire printed document in half
- 4. Fold over making sure the page numbering is continuous
- 5. For the cover: Print just the first page on card stock paper Cut the cover in half as well
- 6. Assemble the covers on the document
- 7. Punch the left side for a binding, spiral or comb as desired

http://www.lessmiths.com/~kjsmith/crystal/catalog.shtml

KJ Smith

Notes:

Hookup	Page	coil	cap	features
Contents	iii			
Intro Note	vii			
Legend	viii			
Chapter 1 Broadcast				
Sleeper #1	2	0	0	Untuned
Sleeper #2	3	1 S	0	Basic
American Radio Stores	4	1 B	0	TC
Sleeper #9	5	1 S	0	TC
MRL #12	6	1 S	0	2SL
Wagner: XSS v10, n4	7	1 S	0	Veractor
Sleeper #5	8	1 S	1	Series
Sleeper #6	9	1 S	1	Parallel
Sleeper #7	10	1 S	1	SP switched
MRL #1	11	1 S	1	LWT
MRL #17	12	1 S	1	TC
Steinite	13	1 W	1	TC
Dunwoody	14	1 S	2	TC
Babani LD	15	1 S	2	TC
MRL #13	16	1 S	2	SL LWT
Schmarder #30	17	1 L	3	Loop RFC
Schmarder #43	18	1 W	2	LD LD
MRL #2	19	1 S	2 G	LWT
KJS Fleming	20	1 S	2	Valve
BBCS #6	21	2 S	2	TC LWT
Sleeper #11	22	2 S	0	LD SL
MRL #11	23	2 S	1	TC
BBC Comm	24	2 W	0	VM
Sleeper #12	25	2 S	0	VM
Sleeper #14	26	2 S	1	VM
MRL #22	27	2 S	1	VC TC
Sleeper #15	28	3 S	0	VM TC TC
MRL #29	29	3 S	1	VC TC

Hookup	Page	coil	cap	featu	ires
Schmarder #11	30	3 S	2	TC	VM
MRL #15	31	3 S	2	VC	
Sleeper #18 DeForest	32	2 S	1	VC	TC
MRL #35	33	3 S	3	TC	VC
Secor, 1920	34	4 S	0	VM	
StayTuned #76	35	3 W	0	LC	TC
KJS Bremer-Tully	36	2 D	1	LC	
MRL #10	37	2 L	1	TC	
DP Galenatron	38	3 S	2	VC	TC
XSS #59	39	3 D	2	LD	TC
MRL #24	40	3 D	2	LD	TC
MRL #43	41	2 D	2	Cour	nterwound
McCall	42	2 S	1	VC	
MRL #3	43	2 S	2	VC	TC
MRL #30	44	3 D	2 G	LC	LWT
Sleeper #16	45	2 S	0	LC	SL
Sleeper #17	46	2 S	1	LC	SL
KJS Teflon	47	2 S	3G	LC	
Tuggle L17	48	2 W	3 G	LC	TGIWT
Tuggle ML17	49	2 W	3 G	LC 1	Mossfet
Poole #5	50	2 S	2	TC	LC
XSS #58	51	2 S	2	TC	LC
Polk Symmetry	52	2 S	3 G	TG	4SL
Poole off the shelf	53	2 S	3 G	TC	LC
KJS Hammarlund	54	2 S	3 G	TG	SEC
XSS #54	55	35	3	LC	WT
KJS ID #3	56	2 S	3 G	TG	TC
Dejan	57	2 S	4 G	LC	TGIWT
M Hampton, BRG 2009	58	2 S	5 G	TG	LC
w Thelen, BRG 2006	59	2 W	5	TG	
Sleeper #19	60	4 S	1	LC	SL LD
Kinzie 4/b	61	35	5	LD	LC
RTVE p129	62	2 SW	/ 2	FW	

XSS

www.midnightscience.com/index.html Crystal Set Society, (M Peebles) Newsletter #

References:		Hookup	Page	coil	cap	featu	ires
		Schmarder #1	63	2 W	4		
PPCS	Pour Pook of Crustal Sate	Boursin 1939	64	2 S	1	MW	LW
DDC3	W I May 1054	Jacquemard	65	3 S	2	MW	LW
	w J May 1934	Proton Mystery	66	2 C	1	TF	
Pahani	Cructal Sat Construction	MRL #8	67	2 L	1	TF	CK
Babain	BB Babani	Peebles XSS #9	68	2 L	1	TF	
	BB Babaili,	KJS Mystery	69	2 C	2 G	TF	TG
BCBC	Birmingham Crustal Radio Group	Tuggle Mystery	70	2 C	2 G	TF	TG
DCRO	http://www.crystalradio.us/	Solomon Double G	71	2 C	2 G	TF	
	http://www.orystanadio.as/	MRL #39	72	2 L	2 G	TF	TG
GE Ham	GE Ham News V10 n6	Gollum Mystery	73	2 C	4 G	TF	
		Proton Mystery Plus	74	3 C	1	TF	
Gollum	home snafu de/wumpus/gollum/	MRL #4	75	3 L	1	TF	
Gonum	nomelonaraide, wampuo gonam	Solomon Mystery Plus	76	3 C	2	TF	
Kinzie	in XSS newsletter #47	Solomon Crazy Plus	77	3 C	2 G	TF	
		MRL #23	78	3 L	2 G	TF	LWT
Klase	www.skywayes.ar88.net/xtal/xtal.htm	Solomon Almighty	79	3 C	3 G	TF	
	5	GE Ham News	80	2 L	4 G	FW.	DA
MRL	Modern Radio Labs HB 17, 25	Pop Mechanics	81	3 M	3 G	FW	-
	Elmer G Osterhoudt	XSS #62	82	5 M	36	FW	TD
		Sleeper #21	83	2 S	3 G	SL	CT
Poole	bellsouthpwp2.net/w/u/wuggy/	BBCS#II	84	28	36	TC	
		Coupled Trap	85	45	2	IWI	
Schmarder	www.schmarder.com/radios/crystal	Sleeper #20	80	45	2		TC
		Hogan 1922	8/	45	2		IC VC
Sleeper	Radio Hook-Ups	A55 #05 Ford Don M 1045	88	45	20		vC
-	Milton B Sleeper 1920	Poru, Pop N 1945	09	45	20	LK	1
		Kadio Craft S1#51	90	4 S	30	Banc	i select
Solomon	Solomonmusic.net/Radios.html	RJ5 Millstrei B0y Dotorson VSS #107.8	91	51	3 4 G		CV
		Dorkot DW 1024	72 02	5 S	4 U 2		
Stay Tuned	www.crystalradio.net/crystalplans	Darket, KW 1924	75	0 W	2	LD	LC

Hookup	Page	coil	cap	featu	res
Chapter 2 Shortwave					
KJS Global DX	96	1 W	2	TC	
Poole SW	97	2 S	1	LC	
XSS #56	98	2 S	2	TC	
H Lash SW	99	2 S	4 G	LC	
AKlase SW	100	3 S	3 G	LC	LD
Harthun SW Mystery	101	3 D	1	TF	SW
Chapter 3 Misc					
Wave traps	104		Circuit	Addi	tions
Benny & SEC	105		Circuit	Addi	tions
Detector Bias Circuits	106		Circuit	Addi	tions
Matching Transformer	107		Circuit	Addi	tions
Transistor detectors	108		Circuit	Addi	tions
Phone Amplification	109		Circuit	Addi	tions
Dummy Antenna	110		Radio	Measu	irement
Performance Test	111		Radio	Measu	irement
Diode Test	112		Radio	Measu	irement
KJS Spark Gap	113		Transr	nitter	
Marconi 1896	114		Cohere	er dete	ctor
Lodge 1898	115		Cohere	er dete	ctor
Tesla 1899	116		Cohere	er dete	ctor
Marconi 1900	117		Cohere	er dete	ctor
DeForest Smythe 1902	118		Cohere	er dete	ctor
Anderson XSS #53	119		Hetero	dyne	
Fleming Valve	120		Vacuu	m Dio	de
Pratt 1915 IRE v2 n2	121		Crysta	l+Aud	ion
Audion Valve	122		Armsti	rong C	lircuit
Armstrong Regen	123		Dec 19	914	
AF amplifier	124		LM 38	6	
References	125				
Notes	126				

AF Audio Amplifier

Introduction:

The following catalog features circuit diagrams hand-drafted by myself from various sources (as indicated on each page, see catalog reference). When I first entered the crystal radio hobby, I was amazed and more than a bit intimidated by the sheer variety of circuit possibilities. I began to make my own circuit drawings in order to get a handle on this in addition to finding interesting circuits to construct myself.

To organize the circuits from fairly easy to rather complicated, I put together a simple classification based on the number of Inductors and Tuning Capacitors in each circuit and a few of their main distinguishing features, but this does not always feel right. Sets are arranged broadly by groups, single-tuned, variometers, double-tuned, etc. Better classifications may exist, but this works well enough for my purpose. A legend follows so anyone may break the code.

I provide only minimal information about each circuit. Although an experienced builder may make the calculations to build a radio from the data provided, I mostly intend this for information only. I highly recommend if you wish build a set to consult the original reference.

Please note that this compilation represents only a small fraction of the circuit possibilities in the world of crystal radio. Competition sets in particular can get very complex. I have tried to find a wide range of styles and ideas with examples from many circuit families. The reader is encouraged to pursue more on the web or via whatever sources are available.

Kevin Smith

Legend:

Coil

2, 3+ number of coils
 S = single winding selenoid
 W = spiderweb, other non-selenoid
 D = dual windings on one form
 M = multiple windings on one form
 C = co-wound, bifiliar
 L = layered windings

Capacitor

1, 2, 3+ number of capacitors G = ganged

Features

- $\begin{array}{l} VM = variometer \\ VC = variocoupler \\ LC = loose coupler \\ FW = full wave receiver \\ LD = loading coils \\ CK = rf choke \\ CT = capacitively tuned \\ TG = tuggle tuning \\ TF = telefunken variation \\ SL = slider tuned \\ TC = tapped coils \\ LK = link coupling \\ LWT = linked wave trap \\ IWT = wave trap inductively coupled \\ \end{array}$
- MW = Medium Wave
- LW = Long Wave
- SEC = Selectivity Enhancement Circuit
- B = Benny circuit

L1-2	coupled tuning	g circuit	
L3-4	feedback circuit (transformer)		
C1	tuning capacit	or	
C2	circuit choke		
B1	A-battery	filament current	
B2	B-battery	plate potential	
Single triode	vacuum (Audio	n) tube	
F	Filament	supplies electron current	
G	Grid	control space charge around	
filament			
Р	Plate (Wing)	rectifier / oscillator	

Armstrong Circuit Audion Valve

Single Audion tube rectifies signal and provides amplification.

L1-2	Coupling coils
С	Tuning capacitor
Α	Filament current
В	Supply of plate potential

Vacuum Tube elements

F	Filament	supplies electron current
G	Grid	control space charge around
filament		
Р	Plate (Wing)	rectifier / oscillator

Unit prefix's			
	m	milli	10^-3
	u	micro	10^-6
	n	nano	10^-9
	р	pico	10^-12
Old radio tex	t notation		
	1 cm	= 1 nH	

1 mmf = 1 pF

Poole's Quick Fix's Add a loading coil for short antennas Add series capacitance for long antennas Add coupling coil in front of tank Tap antenna down on coil Tap diode down on tank coil

To consider: Add a Benny, even without matching transformer Add SEC to unload diode Add Bias to the detector

Pratt 1915 IRE v3, n2

Combined crystal detector and Audion amplifier circuit to test amplification on distant signals.

Fleming Valve

CHAPTER 1

BROADCAST BAND HOOK-UPS

Figure 20a Simple circuit for the two-electrode vacuum tube as an oscillation detector in radio telegraphy.

Rectification of signal with diode tube

- L1-2 Coupled coils
- C1 Tuning capacitor
- C2 Shunt capacitor
- R Variable resistor to adjust temperature on filament
- B1 Battery for heater (filament current)
- V Vacuum diode (Fleming Valve) rectifier

P35: 1918_Bucher Vacuum tubes in wireless communication

Sleeper #1

0 0

Untuned

XSS #53

Heterodyne Circuit

Anderson

Detector of radio waves

Untuned circuit, all frequencies, especially those close to the natural resonance of the antenna itself will pass.

Diode shown in parallel with the phoned, may also be placed in series, but will have lower sensitivity.

DeForest - Smythe 1902

"Receptor"

A1-2	Anti-Coherers
RFC1-2	Choke coils
С	Tuning condenser
L	Inductor
В	Battery
S1-2	switches

Sleeper #2

1S 0 Basic

Variable inductance circuit with tapped or slider-tuned coil.

American Radio Stores Inc.

Marconi 1900

1B 0 TC

Variable inductance circuit with 2 sets of taps, Units and Multiples

The fascination of this radio is its tapped, bundle-wound coil. Taps are formed to wind into the main bundle.

- L3 Ant loading coil
- Loading inductor g
- C1-2 Tuning condensers
 - Coherer
- Κ "Stopping" condenser
- в Battery

Coherer and telephone circuits as per Lodge Patent

С

- L1 Secondary inductor
- L2 Primary inductor RF Choke
- L3
- Cp C Condenser 500 pF
- Coherer
- в Interrupter "Break"
- B1-2 Batteries
- resistor r
- R Relay (sounder or headphones)

Variable inductance circuit with double switch to taps on coil, coarse and fine spacing switches separate.

MRL #12

1S 0 2SL

Form	2" x 4 ½"	
L1	120t,	22 awg
C1-2	Fixed mica	a, 150 pF
Р	primary sli	ider
S	secondary	slider
Х	crystal slid	ler

Lodge 1898

L1	Variable antenna inductor
L2	Coupling coil to detector circuit
С	Coherer
В	Battery, current triggered through coheren
K	Condenser of large capacity

This detects radio energy impulses, damped waves ala Morse. Secondary coil aperiodic, tuning un-necessary. First receiving circuit to place detector circuit away from antenna circuit thus reducing load resistance and allowing antenna to be tuned.

Marconi 1896

Untuned receiver

L1-2	Choke coils
С	Coherer
B1-2	Batteries
R	Relay
S	Morse sounder

Coherer tapper not shown

Wagner: XSS v10, n4

1S 0 Veractor

L1	260 uH, tapped
C1	1000 – 5000 pF
D1	MV1662 veractor
D2	1N34A
R1	100k ohm
R2	5-10Meg Pot
B1	9 – 15V DC

Tuning of set via variable capacitance diode (veractor) rather than traditional Vcap. Crystal Set Sociery, 2000, v10, n4.

Sleeper #5

1S1 Series

Series tuning capacitor

The lower the capacity used, the shorter the wavelength, (higher frequency) tuned.

Adding series capacitance lowers overall capacitance and thus "shortens" the antenna.

KJS Spark Gap Transmitter

Diode Test

Petersen (modified)

- R1-2
 1k ohm

 R3
 23k ohm

 B
 Variable power supply (18 24V max)

 VM
 Volt meter (digital)
- AM Amp meter (digital)
- DUT Diode Under Test

Sleeper #6

1S1 Parallel

Parallel tuning capacitor

The lower the capacity used, the greater the wavelength, (lower frequency) tuned.

Adding capacitance in parallel increases overall capacitance thus "lengthening" the antenna.

Sleeper #7

1S1 SP switched

Series / Parallel switched tuning capacitor

DPDT switch to choose between the two prior circuits in a single set.

Performance Test C Lauter

Measurement Load

R1 =	1M ohm pot
R2 =	100k ohm
C2 =	0.01 uF

Hookup to measure crystal set performance. Connect dummy antenna between Signal generator and set, use load between set and DVM. Follow protocol of Lauter: http://www.oldradioworld.de/gollum/testing.htm

Note: Modification of the Load (pot) made to determine impedance match at output. kjs

Dummy Antenna

MEASUREMENTS ON RADIO RECEIVERS

36. Receiver Characteristics and Their Determination.—Endio receivers are toted by employing an artificial signal from a standard signal generator to provide a voltage corresponding to that induced in the receiving antenna. This voltage is characteristics such that the receiver views substantially the same impedance as it would in normal operation with an actual antenna. The receiver output is then observed by replacing the loud-speaker or telephone receivers by a mitable resistance loud, with which is associated a power indicator.

The dummy atteman recommended for use in testing broadwart receivers is given in Fig. 78.³ The impedance of this network in the frequency range 540 to 1,600 kc approximates that of the typical open-wire antema resonant at about 2,500 kc, and having a expactly of the order of 300 μ , At At higher frequencies the network approaches a constant impedance of 400 clams, and so resembles a nonresonant transmission line of corresponding impedance.

¹ Where tests are to be made only in the standard broadcast frequency range, an alternative network consisting of a capacity of 200 soft, relations of 25 ohms, and an inductance of 20 sh, all connected in series, is commonly used. Stock a dummy actenue has practically the same impedance as the recommender in this frequency range.

From Terman's Radio Engineer's Handbook, first edition, 1943, pp 973 and 974.

MRL #1

Form	2" x 4 ½"
L1	75t, 22 dcc ~175 uH
	Taps: 3, 6, 9, 12, 15, 20, 25, 30, 35, 40, 45
	50
C1	365 pF
C2	fixed, 15 – 100 pF depending on antenna
	(or just make it variable)

MRL #17

1S1 TC

Form 2" x 4 ½" L1 111t, 24 dcc ~340 uH Taps: 20, 36, 46, 51, 56, 66, 76/83, 89, 96, 111

S1 and S2 to taps 20, 36, 46, 51, 56, 66, 76 S3 to taps 83, 89, 96, 111 Simple Amplification for your Phones

A few extra components can add up to 10 dB of volume to your phones. This may offset some of the lost sensitivity when used with highly selective sets..

Transistors may be substituted for diode detectors to make interesting configurations while remaining un-powered. These form a starting point, see what works.

1W 1 TC Crystal book-style condenser рF Basic radio from 1920's Spiderweb coil ID OD 45t, 22 dcc, 6 taps

C1 mica book-style ~250 uH

108

Steinite

Borden Radio Dunwoody

1S 2 TC

Form 2" dia L1 100t, 22 awg C1-2 365 pF Impedance Matching Transformer

I have generally avoided including schematics and info concerning impedance matching transformers as I do not have much experience with them. The above general schematic I take from Ben Tongue's article 01. Note that he includes a benny as a standard part of the transformer circuit.

The transformer provides a 16:1 transformation ratio between the typical 12k ohm phones and a tank Rd of around 192k ohms.

Detector Bias Circuits

Babani Long Distance

Form 2 ½" x 3" L1 51t, 24 swg ~170 uH Taps 2, 4, 6, 8, 10, 12, 14, 16, 31, 41

C1-2 365 pF

MRL #13

1S 2 SL, LWT

2-Slider with QRM

Form 2 ¹/₂ x 4 ¹/₄" L1 120t, 22 awg ~460 uH C1-2 365 pF not ganged Benny

A Benny serves to equalize the DC load resistance on the diode to the AC audio load.

Examples of Benny circuits, with or without variable resistance.

Selectivity Enhancement Circuit

Example of a circuit to include for selectivity enhancement. Simple cap, small trimmer, or differential cap (shown on left). Cap ~ 20pF, choke 25+- mH. Wave Traps

Inductively coupled:

Coil should have same diameter as set tuning coils, placed inline to couple.

Directly coupled:

Form 1" x 1 1/2"

L1	110t, 30 awg on base layer
L2	15t, 22 awg space wound on top
C1	410 mE

C1 410 pF

Schmarder #30

L1	Loop 30x36", holes spaced 3/8"
	15t, 660/46 litz
L2	2t, 40/38 litz coupling winding
L3	2.5 mH RFC
C1-2	365 pF (ganged?)
C3	3-30 pF trimmer
C4	500 pF
C5	0.1 uF
R1	100 k

C3-L2 is the Selectivity Enhancement Circuit. C5-R1 is the Benny

Schmarder #43

1W 3 CK

CHAPTER 3

MISCELLANEOUS

- L1 spider, 1" ID, 54t, 165/46 L
- C1-2
- 365 pF (ganged?) 10 pF trimmer (or 5-50 var) C3
- C4 180 pF
- R1 47 k (w/crystal earphones only)
- RFC 27 uH

C3-RFC is the Selectivity Enhancement Circuit.

MRL #2

1S 2G LWT

Form 2" L1 90t, 22 dcc ~220 uH taps, 5, 10, 16, 23, 31, 40, 50, 61, 73, 90

C1, C2, 365 pF, may be ganged Switch broad / narrow tuning

QRM may be placed in tank as well to cut out strong locals.

This set "looks" a lot like May's BBCS#6 set without the choke, (p 20).

KJS Fleming

1S 2G Valve

Valve Detector of Professor Fleming Patented 1904

Form 3.54"

L1 49t, 18awg, taps 0,8,12,17,24,34

C1a-b 470 pF ganged

This is MRL #2 with Selectivity Enhancement Add, superficially resembling BBCS #6, p21.

Form 2 3/8" x	2 1/2"
L1	20t, 22 awg, close wound
Space 1/2" d	ual winding
L2	13t, 20 awg
L3	6t, 22 awg, bifilar with L2
C1	15 – 250 pF

The antenna may be connected directly to post A or B bypassing the coil L1.

Al Klase SW

3S 3G LC, LD

L1	2",	18t,	14	bare	awg,	clip to tap	
L2	2",	2t,	14	bare	awg		
L3	2",	8t,	14	bare	awg,	clip to tap,	~4.3 uH

C1	100 pF	2 gang
C2	365 pF	

C2 365 pF C3 fixed 0.5 uF

R1 100 k T1 100 – 600 k

Back end to audio transformer and S-meter

WJ May BBCS #6

2S 2 TC, LWT

Forms 2" x 4'	,
L1	90t, 22 dcc ~230 uH
L2	Taps 5, 10, 15, 25, 30, 40, 50, 60, 70, 80 choke 110t, 38 dcc right angle to L1
C1-2	500 pF

This set looks similar to MRL #2 (p19), See also MRL #8 on p67 and MRL #23 on p78. Sleeper #11

2S 0 LD, SL

Slider tuned radio with loading coil in front end Coils in series

Loading coil increases the wavelength tuned.

H Lash SW

Shortwave	
L1	2", 9 1/2t, 22 awg
L2	2 1/8", 30t, 22 awg on top layer
C1-2	365 pF - 180 pF 2-gang

XSS #56 SW

2S 2 TC

Forms 3 1/2" x 3 1/2"

L1-2 space wound, 6-8 tpi, 14 awg, ~38 uH

C1-2 100 pF

Form 2 ½ x 4 ¼" L1 132t, 24 dcc Loading, ~625 uH 12 taps, spaced each 11 turns L2 40t, 20 dcc 2" space wound ~80 uH Coils at right angles, not coupled

C1 350 pF

BBC Commemorative (Prac Wireless Sep 1972) AKA Sleeper #12

Tuning accomplished by varying the mutual inductance between two coils connected in series.

Owen Poole SW

Form	1	5/8"

L1 14t, 24 awg hookup wire ~12.4 uH

L2 5t, 24 awg hookup 1/8" from first coil

C1 10-60 pF

KJS Global DX

1W 2 TC

C1-2 10 - 115 pF (tunes ~ 6 - 18 MHz)

Set based on Gollum SW Set

Sleeper #12, 13

Variometer

Optional capacitor in series to ground to tune upper BC band

Sleeper #14

2S 1 VM

CHAPTER 2

SHORTWAVE HOOK-UPS

Variometer Parallel tuned circuit

Variable condenser to tune wavelengths greater than the circuit with variometer alone.

120 M	2.3	2.5 MHz	
90	3.2	3.4	
60	4.75	5.06	
49	5.9	6.2	active
41	7.3	7.35	
31	9.4	9.9	active
25	11.6	12.1	active
22	13.5	13.9	acrive
19	15.1	15.8	active
16	17.5	17.9	
15	18.9	19.0	

MRL #22

2S 1 VC, TC

Variometer, coils in series		
L1 stator	2" 54t, 22 dcc	
	Taps : 14, 27, 39, 48, 54	
L2 rotor	1 1/2", 11t, 22dcc	
C1	365 + Pf	
S1-2	Roraty switches	

Sleeper #15

3S 0 VM, TC

Variometer

With tapped loading coil in series with the variometer. Tap separation equal to the inductance range of the variometer.

Barkett, Radio World 1924, (st #20)

8W 2 LD LC VM

The Ultimate Coil Fantasyland:

Coils L1-L5 b	asket weave	
Coils 6-7 hone	eycomb	
L1	3" loading, 50t, 20 awg, taps	~175 uH
L2	4", 25t, 20 awg	~ 90 uH
L3	3", 60t	~230 uH
L4	4", 30t	~125 uH
L5	3", 30t	$\sim 80 \text{ uH}$
L6-7	25t	
L8	variometer	
C1-2	365 pF	

Petersen XSS 107-8

55 4G LK CK

L1 L2 C1	4 x 3", 44t, # 1 ¾ x 3", 15t 365 pF 2-gang	#26 hookup, stator ~250 uH gap 15t, rotor g
L3-4 C2	3 ¼", 68t, 20 365 pF 2-gan) awg, right angles ~300 uH g
C3 RFC	10 pF 2.5 uH	C3/RFC SEC circuit to lightly load detector
C4 R1	0.1 uF 22 k	C4/R1 is a Benny
R2	120 k	for high-impedence phones

MRL #29

3S 1 VC, TC

Variometer

Form 2" x 4 1/2"

Ls	3 1/2" x 2 1/2", 60t, 24 dcc, gap ~360 uH
	Tap at 30
Lr	2 1/2" x 2", 64t, 28 dcc, gap ~300 uH
L3	loading, 2" x 4 1/2", 100t, 24 awg
	Tap each 25t

Tap each 25t ~300 uH C1 365 pF

Schmarder #11

3D 2 TC VM

Coupling between antenna coil and stator.

KJS Minstrel Boy

5T 3 LK

Link coupled Triple tuned set

L1-L5	180 uH Air-core torroids (Magnavox)
L2-L4	35 uH coupling coils within above
L3	110 uH Honeycomb,
C1,2,3	540 pF each
Series/Paral	lel switch on antenna circuit cap

4S 3G Band Selection

L1	4", 80t, 28awg, stator	~840 uH
L2	2", 80t, 28awg, rotor	~300 uH
L3	1", 48t, 28 awg	~ 50 uH
L4	3", 90t, 24 awg	~515 uH
C1	365 pF	
C2	365 pF 2-gang	

turns on L3 controls degree of band selection

How does this work? How to "select" band? Make L3 variable?

LI	3" x 4", 24t, 20 dcc, ¹ /2" gap, 45t, 22 dcc
	Tap at 30
L2-3	2" x 2", 60t, 24 awg
C1-2	? 365 pF

KJS DeForest (aka Sleeper #18)

2S 1 LC, TC

Basic Variocoupler

- L1 Primary: stator 560 uH tapped fine / coarse switches L2 Secondary: rotor 285 uH
 - Variocoupler NOS De Forest Co
- C1 550 pF to tune secondary circuit Used, Windham Co

Note: The radio doesn't couple well and tunes broad as a barn. Pity...

Ford, Pop Mech 1945, (st #111)

4L 3G LK

Form 1" x	2 1/2"	
L1/L3	30t, 30 awg, top layer	~ 28 uH
L2/L4	140t, 30 awg, base layer	~235 uH
C1-2	365 pF 2-gang	
C3	3-30 pF trim	
C4	0.001 uF	

Coils at right angles

Option to connect all three circuits to ground to increase sensitivity.

XSS #63

4S 4 LK

Link coupled variocoupler

L1 rotor	1 1/16"x 7/8", 16t, 28 awg,	gap in coil
L2 stator	1 7/8"x 2 3/8", 72t, 28 awg	~230 uH
1.0	1 7/07 70. 20	220 11
L3	1 //8", /0t, 28 awg,	~220 uH
L4	1 7/8", 35t, 28 awg,	~75 uH
C1	265 F.2	
CI	365 pF, 2-gang with trimme	ers
C2	0.001 uF	

MRL #35

3S 3 TC, VC

Forms 2" x 4	/2"	
L1	100t, 24 dcc	~300 uH
	Tap every 10t	
L2	stator	100t, 24 dcc, tap every 10t
L3	rotor,	1 1/2" x 1 1/2", 35t, 32 awg
C1-3	365 pF	

88

Secor, 1920

4S 0 VM

Double variometer

VM1	loading	
VM2	tuning	
C1-2	365pF	
C3	0.001 uF	

Hogan 1922

4S 2 LK, TC

- Link coupled variation with sliders or taps
- C1 C2
- 365 pF 500 pF or higher

Sleeper #20

4S 2 LK

Link coupled set with loose coupling

Primary and intermediate circuits tuned with variable condensers while secondary circuit is untuned, (aperiodic). Stay Tuned #76 (ref not known)

3W 0 LC, TC

Tapped Spiderweb Rig

Coils ID 1 3/4"

L1	50t, 22 dcc, over 1 under 2, 20 spokes
	Tap every second turn
L2	12t, 22 dcc, over 2 under 2, 19 spokes
L3	50t, 22 dcc, over 2 under 2, 19 spokes

Visit Darryl Boyd's excellent website to see the plans for this set. It is a visually interesting set that will please you.

2D 1 LC

Basic tuner with co-wound antenna coupling coil

Dual wound primary and secondary on open form

L1	20 uH
L2	370 uH
C1	10 - 270pF

This set features a lovely bank-would coil with separate primary and secondary. The high primary inductance necessitated a low-value variable cap with as low a minimum as possible. Coupled trap

4S 2 IWT

Coupling coil circuit with trap

L1-L4	1.5" form, 90t 28 awg, 220 uH
L2-L3	1.5" form, 45t 28 awg, 85 uH
C1-C2	365+ pF

(Reference unknown, clipped from an old magazine)

BBCS #11

2S 3G TC

Forms 2 ¹/₂" x 2" L1-2 50t, 28 swg (~25 awg) ~180 uH

C1	100 pF
C2 C4	500 pF 2-gang
C3	50 pF trimmer

Band Pass Circuit Grounded screen between coils to prevent coupling

Capacitively coupled

MRL #10

2L 1 TC

Form 2 x 4 ¼" L1 40t, 20 dcc start 1/8" from end ~95 uH L2 160t, 28 dcc on top layer loading ~1100 uH Taps 5, 10, 20, 60, 100, 160 C1 365 pF C2 150 pF optional Coils not coupled. Dan Petersen Galenatron

3S 2 VC, TC

LI	3.15", 50t, 22 awg	~230 uH
L2	3.15", 10t, 22 awg	

- L3 2.15"x2", 50t, 22 awg, gap in coil
- C1-2 400 pF

Sleeper #21

2S 3G SL, CT

Primary and secondary circuits tuned by varying the coil inductance with sliders while coupling between primary and secondary is varied capacitively, (ganged capacitors)

XSS #62

5M 3G FW, TD

Fullwave Receiver (variation on Pop Mech, P72)

Form 1 7/8" x 2"

L1	72t, 28 awg,
	Taps 0, 16, 30, 44, 58, 72
L2	17t, 28 awg

Form 1 7/8" x 3 1/2"

L3,5	72t, 28 awg,	
	Taps 0, 18, 36, 54, 72	
L4	17t, 28 awg	

S1 6-position switch

XSS #59

3D 2 LD, TC

L1	2 ¾"x 3", 42t, 22 awg ~130 uH	
L2	2 3/4"x 4", 67t, 22 awg ~255 uH	
L3	2 3/4"x 4", 15t, 22 awg 1/8" from L2, same for	m
	~ 25 uH	
C1-2	365 pF	
Sw	4-6 position switch	

MRL #24

3D 2 LD, TC

Forms 2" x 41/2"

L1	100t, 24 dcc, loading coil	~300 uH
	Taps 0, 25, 50, 75, 100	
L2	90t, 24 dcc,	~260 uH
	Taps 5, 25, 50, 90	
L3	25t, 24 dcc 1/8" from L2,	same form
		~ 40 uH

C1-2 365 pF

Popular Mechanics (Dec-1950): BBCS #4

Full wave receiver

Form 1" x	4"	
L1	43t, 32 awg	~ 60 uH
L2-3	120t, 32 awg	~270 uH
1/8" betwe	een windings	

C1	365 pF ?
C2	fixed, ? pF
C3	365 pF 2-gang with trimmers

This set is a fun candidate to make with a 5726 dual Diode vacuum tube.

EL Anderson, (GE Ham News, 1955, v10, n6)

2L 4G FW DA

Twin-Crystal Set

L1, L2	Variable Loopstick Coil
--------	-------------------------

- C1 15-400 pF 3-gang
- C2 15-400 pF To trim balance between antennae

2D 2 Counterwound

Form 2" x 4 1/2"

- L1 Use 27 awg ~375 uH each section Wind 100t, anchor then reverse wind 100t Taps every 10t on each section
- C1-2 365 pF (not ganged ?)

Gordon McCall

2S 1 VC

Variocoupler

L1	4", 57t with gap, #22 awg
L2	3", 57t with gap, #22 awg
C1	0.045 E

C1 ? 365 pF

Solomon Almighty

Telefunken Style

Form 3"	
L1	50t, 24 awg, base layer
L2	15t, 24 awg, top layer
L3	25t, 24 awg, bifilar with L1
C1	500 pF, 3-gang
C2	0.001 uF

MRL #23

3L 2G TF, CK, QRM

Telefunken Style with RFC and QRM See also MRL #8 on page 67. With family resemblance to sets on pages 19-21.

Form 2" x 4 1/2"

L1	75t, 22 dcc, base layer	~175 uH
L2	75t, 22 dcc, middle layer	~190 uH
L3	15t, 22 dcc top layer	
19 uH		

C1 365 pF, 2-gang RF choke 85 mH MRL #3

2S 2 VC, TC

Variocoupler

L1	3",	100t,	24 dcc, 4 taps	stator	~590 uH
L2	2",	75t,	24 dcc, 4 taps	rotor	~205 uH
C1-	-2		365 pF		

MRL #30

3D 2G LC, LWT

QRM	1"x	11/2",	110t,	30 awg,	15t, 24	dcc space	
Forms 2"	x 4½",						
110	754	22.1			- 4	175 II	

L1-2	/St, 22 dcc, couple to ant ~1/5	uН
L3	8t, 22 awg 1/8" from L2, same for	m
	~5-6	uΗ

C1 365 pF, 2-gang

Solomon Crazy +

Telefunken Style

Form 2.5"	
I 1	

L1	45t, 24 awg
L2	15t, 26 awg on top layer
L3	25t, 30 awg, bifilar with L1

C1 500 pF

Solomon Mystery +

3C 2 TF

Telefunken Style

Forms 2.76"

L1	45t, 22 awg
L2	15t, 22 awg on top layer
L3	25t, 30 awg, bifilar with L1

C1-2 350 pF not ganged

Sleeper #16

2S 0 LC, SL

Loose coupler

Aperiodic secondary, responds to any wavelength with which the Primary coil may be tuned. Sleeper #17

2S 1 LC, SL

Loose coupler with tuned secondary

Both Primary and secondary circuits may be tuned to resonance giving high efficiency of energy transfer. Changing coupling between the two coils can vary the degree of selectivity attainable, at the expense of sensitivity. MRL #4

3L 1 TF

Basic Telefunken Set

Form ?

L1 L2 L3	75t, 22 dcc, base layer 20t, 22 dcc, middle layer 10t, 22 dcc top layer	~175 uH
C1	365 pF	

Proton Mystery +

3C 1 TF

Telefunken Style

Form 3"

L1	45t, 23 awg, base layer
L2	15t, 23 awg, top layer
L3	25t, 29 awg, bifilar with L1
C1	365 pF
C2	0.001 uF

KJS Teflon

Simplicity in a double-tuned rig.

Silver-plated, Teflon-insulated Coils, over $1\/$ under $1\/$ 18 awg, 4.75'' av diameter

- L1 41t, 3.75" long, 171 uH
- L2 50t, 4.25" long, 234 uH
- C1a 465 pF
- C1b 375 pF
- C2 433 pF

Mike Tuggle Lyonodyne 17

2W 3G LC, TG, 2WT

L1 L2 L3 L4	51t ferrite 36t basket 36t basket 42t basket	147 uH 185 uH 185 uH 187 uH
C1 C2, C3, C4 C5	15 – 470 pF, 15 – 497 pF 0.02 uF	2-gang
R1	$500 \ k\Omega$	
T1	UTC A-27	
D1	RS 12101 3R	т

Gollum Mystery

Telefunken Style

Form 3.15" L1 L2	48t, 26 awg ~250 uH 28t, 22 awg, bifilar with L1
C1-2	?365 pF, 2-gang
R1	68 kohm

Capacitor gangs switchable in parallel to add capacitance.

MRL #39

2L 2G TF, TG

Telefunken Style

Form 2" x 4 1/2"

L1	80t,	22 dcc	primary on bottom layer 190uH
L2	40t,	20 dcc	secondary on top layer ~ 70uH

C1 pF 2-gang

Mike Tuggle Lyonodyne Mod

2W 3G LC, TG, MOSFET

Owen Poole Project Crystal Radio #5

2S 2 TC, LC

Antenna tuner w/secondary

Form 1 3/4"

L1-2	152t, 24 awg Tap each 10 turns	~390 uH
C1-2	? 365 pF	

(essentially the same as MRL #3)

Solomon Double gang

Telefunken Style

Form 6 cm	n (3.275")
L1	50t, 24 awg primary
L2	25t, 24 awg secondary co-wound
C1	500 pF 2-gang

Mike Tuggle Mystery

2C 2G TF, TG

Telefunken Style w/QRM

- L1 36t, 660/46 litz 5 inch basket weave
- L2 18t, 420/46 litz
- C1 500 pF 2-gang
- T1 UTC LS-12

XSS #58

Double loose coupler Navy Style

- L1 3 ½"x3 ½", 48t, 22 awg Taps 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 44 48 L2 2 3/8" x 3 ¾", 72t, 22 awg Taps 0, 6, 12, 18, ... 72
- C1-2 365 pF

Tom Polk Simply Symmetry

2S 3G TG, 4SL

Form 2" x 5 ½" L1-2 125t, 18 awg ~240 uH C1-2 365 pF 2-gang C3 365 pF Radio Shack 70v Line Transformer Sliders

KJS Mystery

2C 2G TF, TG

Telefunken Style

Form 8 cm (3.275")
L1	46t, 18 awg primary
L2	24t, 18 awg secondary co-wound
C1	495 pE 2-gang
CI	495 pr 2-gang

Peebles XSS #9

2L 1 TF

Telefunken Style

Form	1	1/4"	х	1	5/8"	
------	---	------	---	---	------	--

L1	110t, 28 awg, base layer	~205 uH
L2	30t, 28 awg, top layer	~ 34 uH
C1 C2	365 pF 0.001 uF	

Long antenna tap at 10t from ground

Owen Poole Off the Shelf

28 3G TC, LC

Form 4" x 4"	
L1-2	60t, 20 awg hookup wire
	Tap at 20
C1	365 pF 2-gang
C2	365 pF
	-
J	optional jumper

KJS Hammarlund

2B 3G TG, SEC, B

Basketweave coil 4.2" OD - 3.2" ID				
	Over 2 – under 2			
L1	38t	20 awg	180 uH	
L2	41t	20 awg	205 uH	
C1-3	510 pF	7	C1-C2 are ganged	
C4	20 pF differential			
C5	0.1 uF			
RFC	Choke: 25 mH			
R1	100k ohm			
D1	ITT FO	D-215 germ	anium	

MRL #8

2L 1 TF, CK

Telefunken Style See also MRL #23 on page 78. With family resemblance to sets on pages 19-21.

Form	2"?
L2 75t,	22 dcc bottom layer
L1 20t,	20 dcc space wound 2 1/2" on top layer
	Taps 4, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20
L3	BC band RF Choke, ~ 500hm DC
	Single or 3-section ok
	-

C1 ? 365 pF

Proton Mystery

2C 1 TF

Telefunken Style

Form 3"

L1	50t, 23 awg primary
L2	25t, 29 awg secondary co-wound
C1	500 pF

C1 500 pr C2 0.001 uF

Helps to add Loading coil in series with antenna.

XSS #54

3S 3 LC, WT

Forms 3 1/2	2"x 3 ¾"	
L1,2,3	55t, 20 awg, no taps	~250 uH
C1,2,3	500 pF	

Series / parallel DPDT switch over L1

Diode on top of tank, why? Candidate for SEC?

KJS ID #3

2S 3G TG, TC

Forms 3.15"

L1	62t, 18 awg
	Tap 11, 16, 22, 31, 43, 62
L2	62t, 18 awg
C1-2	450 pF, 2-gang

Professeur Jacquemard

3S 2 MWLW

Medium Wave / Long Wave Receiver

 L1
 25mm x 68mm, 170t 4/10 wire (~28awg) ~ 220 uH

 L2
 Honeycomb ID 25mm, OD 35mm, W 8mm #turns ?, In-line with L1

 L3
 Honeycomb ID 20mm, OD 34mm, W 6mm #turns ?. Coil for LW

 C1-2
 450 pF

Boursin Selective 1939

2S 1 MW LW

Medium Wave / Long Wave Set

L1 MW 30mm, 90t, tap at 45. ~220 uH L2 LW ID 10-15mm, OD 20-25mm, W ? 280t, tap at 140 C1 500 pF DPDT switch between LW-MW

GO = Grandes Ondes = LongWave PO = Petits Ondes = Medium Wave Dejan's contest rig

2S 4G LC, WT, TG

(Shown without audio transformer)

Contest Rig

L1	ferrite core
L2	basket weave
L3	spiderweb

C1-3 ?

M Hampton, BRG 2009

2S 5G TG LC

Audio transformer not shown

Form 3"

Schmarder #1

RTV Electronics p129

George P Pearce

2SW 2 FW

L1, L3	Solenoid
	2" od, 1.2" l, 63t, 27 awg, ~150 uH
L2	Basket o1,u1
	2.25" od, 1.25" l, 80t, 21 awg, ~350 uH
	Coils spaced about 1" apart
C1, C2	380 pF
C3, C4	1000 pF
	*

D1, D2 1N35

W Thelen BRG 2006

- L1 spider, OD 5.7", 9-point, 36 ½t, 660/46 L ~160 uH L2 spider, OD 5.85 », 9-p, 37 ½ t, L~171 uH
 - 450 pF

435 pF

500 pF

- C4-5 50 pF trimmers
 - 0.1 uF
 - 0.47 uF
- R1 500 kΩ
- T1 Vintage RCA

C1

C2

C3

C6 C7

Sleeper #19

4S 1 LC, SL, LD

Loose coupler with loading coils

Primary and secondary circuits each have separate loading coils in order for the secondary circuit to be tuned as well. Loading coils at right angles to tuning coils. In secondary circuit, condenser placed across both tuning AND loading coil.

Kinzie 47b

3S 3 LD, LC

Double tuned set with loading coil