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INTRODUCTION 

This handbook explores radio in general and crystal radio from 
the standpoint of RF Resonance.  I again begin things with a 
brief walk down memory lane with an introduction to the 
subject of resonance and coupled circuits by Dr Hoag written 
in 1942.  This represents an early, but already well-developed 
notion on the theory and application of resonance to radio 
apparatus. 
 
The next few articles explore general theory concerning 
resonance with a strong emphasis on the mathematical base in 
order to help the reader better apply these concepts in theory 
own work, especially with respect to setting up excel 
spreadsheets.   Note that while I like the pretty plots from 
SPICE simulations, I see this as a black box because authors 
almost never present the equations that make the plots 
possible, they are canned inside the program, bad form.  I feel 
that, if I can plot it myself, I must be understanding it pretty 
well. 
 
Then included are general discussion articles on resonance and 
coupled circuits. Most crystal radios of any pretentions to good 
performance will be coupled with separate antenna tuning.  
These articles should help explore this aspect of your radio! 
 
I finally follow with an article on impedance matching and 
resonance as these are closely-related and need to be thought 
of together when designing, or at least understanding your 
radio.   
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Of general note, the web is a marvelous source of data and 
information.  Many long-time crystal set builders, and many 
others have created dedicated sites to disseminate information 
and resources, to share their creations and knowledge.  I am 
eternally in your debt.  All of the material in this handbook is 
copyright for which I have not sought permission.  Therefore 
this is not presented for publication or copy.  It is only my 
personal resource.  I encourage anyone finding this copy to 
pursue ON THE WEB the web pages identified within. I 
include the name of the author and web address of each 
section.  I wish to sincerely thank every author presented for 
their excellent pages and ask forgiveness for my editing into 
this handbook. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Kevin Smith 
2012 
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In The Beginning… Crystal Radio 
By L. Van Warren MS CS, AE  - AE5CC        
All Rights Reserved 
www.wdv.com/.../SoftRadio/BlazingFastSDR/BFSDR-
Chapter1.docx 
 
“Every day sees humanity more victorious in the struggle with 
space and time.” 
– Guglielmo Marconi 
 

 
 
Figure 1:  Earth Footprints of Celestial Radio Sources 
 
Introduction 
There are lots of books, articles and websites describing 
Software Defined Radio (SDR). My goal, in this introductory 
work, is to give you blazing fast access to a working set of 
concepts you can use to decide when and how SDR will be 
useful to you. It will start simply and build essential ideas step-
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by-step. This book has two goals. The first is to provide a 
working overview of SDR. The second is to make hardware 
and software prototyping easier for the uninitiated. 
 
This will not be a mathematically intensive development but 
rather a plug and “play” approach. Each chapter will start with 
interactive simulation and end with real devices - devices you 
can explore and interconnect. The interested reader should visit 
the references provided in the final chapter to clarify the more 
sophisticated ideas. Running each simulation is easy and 
highly recommended. 
 
The book is divided roughly in half. In the first chapters, 
essential radio hardware issues will be discussed. For the 
foreseeable future SDR has not eclipsed the entire radio. Front-
end RF hardware is still required to gather, sample and 
downconvert the signal. In the latter chapters we will transition 
to software-based concerns, while keeping an eye on hardware 
and instrumentation that will make our lives easier and our 
understanding more complete. 
  
To demonstrate hardware concepts, we will be using a set of 
PostCardKits™. The pattern is this. We will use simulation to 
understand the theory behind each PostCardKit™. Then we 
mix and match the postcards to configure different kinds of 
radios. Pretty fun and exciting! Later we will mix and match 
software blocks to accomplish the same objective. 
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where Ze is the equivalent primary impedance 
Z1 is the source impedance (primary) and 
Z2 is the secondary load. 
 
From Reuben Lee, 1947. 
http://www.vias.org/eltransformers/lee_electronic_transformer
s_07b_22.html 
 
Equivalent primary impedance: 
Ze = Z1 + (XM^2 / Z2) 
 
where Ze is the equivalent primary impedance 
Z1 is the primary circuit impedance and 
Z2 is the secondary circuit impedance and 
XM = jwM 
 
From Bob Weaver: 2016 
http://electronbunker.ca/eb/Bandspreading_3.html 
 
Net impedance: 
Ze = Zca || (Z1 + ((wM)^2 / (Z2 + Zcb)) 
 
where Zca Primary circuit Z capacitor = -j / wCa 
Zcb Secondary circuit Z capacitor = -j / wCb 
Z1 Primary circuit Z inductor = j wL1 
Z2 Secondary circuit Z inductor = j wL2 
 
 
Bibliography: 
 
AspenCore , 2016 
The Parallel RLC Circuit  
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Figure 2:  Mix and Match Postcards for Chapter 1 
 
In the second chapter on amplifiers  the crystal radio card is 
improved using an audio amplifier PostCardKit™, an RF 
amplifier PostCardKit™, and two kinds of power cards. One 
power card features rechargeable lithium batteries; the other 
uses solar cells for recharging and direct power. How green is 
that?! PostCardKits™ are flat, lead-free evaluation cards, 
printed on high quality paper with conductive ink. 
PostCardKits™ can be stamped and mailed, or mailed in 
envelopes to maintain pristine appearance. The first chapter is 
introduced with a crystal radio set. This card functions without 
any external or battery power. It receives AM radio stations. A 
first attemp on a file card pulled in stations from Asia and 
Central America. 
 
You can hear fainter stations if you add an audio amplifier 
card. You can receive more stations if you add the RF 
amplifier. These additional cards require power. We will reuse 
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the audio, RF amplifier and power cards in later chapters in 
novel ways. For example, the audio card is a stereo amplifier 
used for a special kind of station hunting called binaural radio.   
 
Laterwe will develop radio software on a PC. Towards the end, 
we will extend the power of the hardware and software and 
reach for the stars. 
 
The first PostCardKit™, Crystal Radio, utilizes a germanium 
diode for signal detection. It demonstrates the simplest 
effective combination of discrete components. It consists of an 
inductor, a capacitor, a resistor, a germanium diode detector 
and a piezoelectric crystal earphone. 
 
  

 
Figure 3: Crystal Radio PostCardKit™ 
 
Don’t let our simple start fool you;  We will be moving many 
these functions into software and Software Defined Radio 
(SDR) can do sophisticated things. 
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(A + jB)  /  (C + jD)  
 
1)   
(A+jB)    (C+jD)     AC + jAD + jBC + ĵ 2BD 
------- * --------   =  ------------------------------ 
(C+jD)    (C+jD)              C^2 + D^2 
 
Remember that j^2 = -1, so 
 
2)     
(A+jB)    (C+jD)     AC + jAD + jBC - BD 
------- * ---------  =  -------------------------- 
(C+jD)    (C+jD)             C^2 + D^2 
 
3)   
(A+jB)    (C+jD)        AC – BD            AD + BC 
------- * ---------  =   --------------  +  j -------------- 
(C+jD)    (C+jD)       C^2 + D^2         C^2 + D^2 
 
Parallel Combination 
 
Zeq = (Z1*Z2) / (Z1+Z2) 
 
 
Appendix 2: 
 
Coupled Impedance Formulae: 
 
From Ben Gurion University EE Lab 7 
http://www.ee.bgu.ac.il/~intrlab/lab_number_7/Two%20induct
ively%20coupled%20RLC%20circuits.pdf 
 
Equivalent primary impedance: 
Ze = Z1 - ZM^2 / Z2 
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Just for fun, I let solver run with k, Ca, E, Cb, R1 and R2. 
Adding R1 to solver's program really allowed it to nail the data 
with a close-fit model. The price? Look at the resistivity values 
it chose. R1 = -439 ohms and R2 = 719 ohms. Well, at least R2 
is not negative! These results may be telling me something 
important, but as yet I am too dense to understand. Or, they 
may be just what they appear, totally bogus. 
 
 
Appendix 1: 
 
Big Fun with Complex Algebra 
 
Multiplication 
(A + jB)  *  (C + jD)  =  (AC – BD)  +  j(AD + BC) 
 
Division 
multiply both top and bottom by the conjugate of the bottom. 
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Figure 4:  Visualization of Radio Spectrum 
 
 
The Crystal Radio PostCardKit™ 
The crystal radio is the simplest of all radios. In World War II, 
Allied GI’s used paper clips set against rusty razor blades to 
form crude diode junction receivers that the Nazi forces could 
not detect. These were dubbed “Foxhole receivers”. Crystal 
radios have a long and colorful history documented in 
Wikipedia and various radio collections documented on the 
web. 
 
Attach the earphone provided to the jack in the upper left 
corner of the postcard. You probably won’t hear anything 
unless you live close to a powerful AM radio station. An 
antenna and a ground will improve your reach considerably. 
Just as a picture in the dark cannot be seen, a radio without an 
antenna cannot be heard. Lighting is half of art. The antenna is 
half of radio. You can learn more about antennas in the ARRL 
Antenna Book. It is highly recommended. 
 
 Putting Up the Litz 
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There is one errand to run before heading back to the easy 
chair. It is essential to route the Litz wire provided around a 
wall or ceiling to create an antenna. With antennas, bigger is 
usually better. I use a fold of masking tape to make a tiny 
hangar that holds the antenna on the wall. You can stick a clear 
pushpin through the tape to secure the antenna. Suspend the 
wire from the four corners of the room so it is up and out of the 
way.  The wire provided is fine, so it is a quite aesthetic. When 
you are done, tin or sand the ends of the wire so that all the 
strands are conducting and install them in the connector 
provided. Now you have an antenna. 
 
This square wire loop is a versatile omnidirectional antenna. If 
you wrap the antenna more than once around the room, the 
inductance will increase and the resonant frequency will drop 
according to: 
  

LC
fresonant π2

1=
 

Formula: Resonant Frequency 
 
This formula informs us that those stations you manage to 
receive will be lower in the band, and lower in frequency. Start 
with one trip around the average sized room. Take your time 
getting this antenna right, it will serve you well.  If you live on 
top of a hill, you will get better reception, but since radio 
waves bounce off the ionosphere, you will usually hear 
something unless you live in a salt mine. Using the clip 
provided, attach your antenna to the upper left hand corner 
your PostCardKit™ by the ANT. symbol. That was the hard 
part. You will also need a good ground. Grounding is 
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happens at the -3dB point. My simulation suggests a resistive 
loss of 18 ohms and reproduced the Q = 83. Pretty interesting. 
But, before congratulating myself too quickly... 
 

 
 
Here I look at the over coupled case. As before, I am just 
unable to reproduce the steep flanks of my measured data with 
such a simple coupled circuit model. At a 2 inch separation, 
and looking only at the lower peak (recall my re-peaking), I 
had measured a Q = 35. The model does a fairly poor job of 
simulating this circuit. Note that in my simulation, I kept the 
known values of inductance for the two coils. Additionally I 
found that solver gave unacceptable values for R1 and so I 
pegged it at 15 ohms. I had solver look for k, Ca, E, Cb, and 
R2. 
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The first thing to note on the above plot is that the over-
coupled curve is not centered with respect to the loosely 
coupled curves. This is a result of my A) not knowing at the 
time about exactly how the resonance curve splits with over 
coupling and B) my technique of re-peaking the set before 
each set of measurements. It is obvious that after moving the 
ATU to 2 inches separation, on re-peaking the output, I must 
have subtracted capacitance shifting the curve upward in 
frequency until the I got a peak at my desired measurement 
frequency of 1100 KHz. I should have made my resonance 
study earlier! 
 

 
 
Looking now at just the measured data from the 14 inch 
spacing and comparing it to a curve generated with my series 
resonance spreadsheet. The data in green is my radio which, at 
this spacing gave me a set loaded Q = 83. I used excel's Solver 
routine on the central three datapoints to search for model 
parameters L, C and R. The steep flanks of the measured data 
were impossible to reproduce, but at least I could see what 
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discussed in an essential book on radio: The ARRL Radio 
Amateur’s Handbook.  
 
   

 
Figure 5: Ideal Reception 
  
Using the Crystal Radio 
Now that the radio has a good antenna, you should be able to 
hear more stations. You can tune the radio with the knob in the 
center. Remarkably, it needs no power!  You might want to 
keep a logbook of the signals you hear, the time of day along 
with any tweaks you have made to the radio or antenna. Low 
frequency signals travel better at night than in the daytime. 
Some high frequency signals are the opposite. Where do we 
look when an aircraft is lost? The radio logbook. 
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Figure 6 – Keeping a log enables discovery. 
 
 
After you log a few entries it will be time to improve the radio. 
We will do that with the amplifiers mentioned above. Now for  
a little about how the crystal radio works.  
 
Basic Parts 
Picking up the card and shining the light on it you will notice it 
contains but five parts! The radio contains a diode, a resistor, 
an inductor, and two capacitors. Here is the schematic for the 
crystal radio including the Tidy TINA meter for RF power 
gain. The meter is used to optimize performance – it doesn’t 
appear in the final circuit. 
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should give pause to note just how little signal one deals with 
in crystal sets. Note that critical coupling is when the 
secondary current attains its greatest value, not necessarily 
where the double hump disappears. Kc = 1/sqrt(Qp*Qs).  
 
A copy of the coupled circuit spreadsheet can be found here: 
Coupled_kjs.xlsx 
 
What else can one do with these spreadsheets? One of my 
motivations in building spreadsheets is that it allows me to 
compare measurements from actual radios to their theoretical 
counterparts. This allows me to better understand my sets and 
approach a best guess on certain parameters I might not 
otherwise be able to measure. The following few plots take 
data from a double tuned set that I have made frequency versus 
DC out at three differing coupling distances, 2 inches between 
coils (over coupled), 8 inches (presumed near critical), and 14 
inches (under coupled). 
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In each plot I show curves with coupling factors of 0.070 
(over-coupled), 0.028 (critically coupled), and 0.010 (loosely 
coupled). I find it amazing just how quickly the induced 
secondary current falls off with lowered coupling. These plots 
look quite different from most "generic" cartoon plots and 

23 

 

 
Example 0: Crystal Radio Schematic and Values 
 
 
Just as in the Richter scale of earthquakes and the Fujitsu scale 
of tornadoes, we use a logarithmic scale when comparing the 
intensity of radio signals. This scale is measured in decibels 
(dB). This makes for much more reasonable comparisons. If 
two signals differ by a factor of two, they are about 3 dB apart. 
If they differ by a factor of four, they are 6 dB, and so on. 
Logarithmic scales turn multiplication into addition. This is 
useful when we want to talk about very large or small 
numbers. To convert a factor of 1000 to dB, you first count 
zeros to get 3. This corresponds to log(1000) = 3. Then you 
multiply by 10. 3 x 10 = 30 dB. So if two signals differ in 
power by a factor of 1000, then they are 30 dB apart: 
 
In short dB = 10log(P), where P is power. Can you feel the 
power? 
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Tip - Use dB to compare the power of radio signals. 
 
The resistor Re and capacitor Ce simulate the earphone. To 
really understand the crystal radio, we must understand the 
principles of the parts. If you are already an expert skip this 
quick review, but you might want to glance at the gain curves 
for voltage, current and power.  
  

 Resistors (units: Ohms) dissipate energy as heat. 
They impede the flow of electrical current, causing a voltage 
drop across the terminal ends. I once asked my dad if it 
wouldn’t be better if a circuit had no resistors at all because of 
this energy loss. He said “No” and then paused for a moment 
and said, “Yes”. The voltage drop E across a resistor is R times 
the current I, using Ohm’s law. You can think of an Ohm of 
resistance as the volt of force required to make an ampere of 
current flow.  
 
 IRE ×=  

Formula: Ohm’s Law 
 

  Power (Watts) is voltage times current. Is your 
resistor rated for the power passing through it? Touch it and 
see, but don’t get burned. 
 
 IEP ×=  

Formula: Power 
 
With Ohms Law and Power, you can derive six others! Two 
other handy resistor formulas: 
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Xs = wLs - 1 / (wCs) 
Rcoupl = (wM)^2 * Rs / (Rs^2 + Xs^2) 
Xcoupl = -1 * (wM)^2 * Xs / (Rs^2 + Xs^2) 
Real = Rp + Rcoupl Imag = wLp + Xcoupl - 1/(wCp) 
w = 2pi * frequency 
 
Where the subscripts "s" means secondary circuit and "p" 
means primary circuit. M is the Mutual Induction of the two 
circuits defined as: M = sqrt(Lp*Ls) and is measured in 
Heneries. The Coupling Coefficient k indicates the amount of 
inductive coupling. This is a fractional value between 0 (no 
coupling) and 1 (perfect coupling). The Coupling Factor for 
the circuit then is defined as follows: M = k * sqrt(Lp*Ls). 
 

 
 
The plot above presents a generic coupled circuit with loose 
coupling (k = 0.1). I show the current induced in the secondary 
and the phase of the circuit impedance. Below are two 
interesting plots with the secondary current and primary 
current each at three different coupling factors. 
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value, reactance consists of inductive XL and capacitive XC 
parts.  The parts are not necessarily the same and so adding 
them together does not necessarily equal zero.  Note that, at 
resonance, they are equal in magnitude but opposite in sign (by 
convention, XC is negative) and they do add to zero.  Where 
they have differing magnitudes, the combined impedance Z is 
the vector sum of the resistance and total reactance (XL + -
XC).  Z is the hypotenuse of a right triangle with an interior 
angle phi.  This is the phase of the circuit.  Where the phase is 
negative the circuit is capacitive, where the phase is positive 
the circuit is inductive.  Where XL-XC is very large with 
respect to R, the phase approaches (but never reaches) plus or 
minus 90 degrees. 
 
A copy of the parallel circuit spreadsheet can be found here: 
Parallel_kjs.xlsx 
 
Time to move to the big leagues with coupling of two circuits. 
Here I am afraid my skills prove inadequate and I have turned 
to Mike Tuggle for help and, ultimately, a spreadsheet to make 
the needed calculations. For this I wish to publically 
acknowledge and thank Mike. Also to apologize to him for the 
significant liberties I have taken with said spreadsheet. 
 

The model is 
based on Terman 
1947 p149, shown 
at left. Mike builds 
a number of 
equations, the 
essential ones of 
which I used as 

follows: 
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Add two resistors in series to obtain the equivalent resistance: 
 
 

21 RRRseries +=  

Formula: Series Equivalent Resistance 
 
  

 
  

Use the product over sum for resistors in parallel: 
 
 

21

21

RR

RR
Rparallel +

=
 

Formula: Parallel Equivalent Resistance 
 

  
The current flow in circuit loops and the voltage drop across 
circuit elements can be computed using Kirchoff’s Laws and 
Thevenin Equivalent circuits. The programming of these laws 
is already done for you in a tidy program called TINA-TI, a 
free download from the TI web site. I highly recommend it. 
Here is a classic voltage divider, simulated in TI’s TINA-
SPICE  
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Circuit 1: Classic Voltage Divider Solved in Tidy TINA. 
 
  

 - Ordy 
Figure 7: No room for color codes on surface mount resistors! 
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w = 2pi * frequency 
 

 
 
This plot above for a parallel circuit looks, as it ought, just like 
that for the series circuit with the same values of L and C. Note 
though that parallel R is significantly higher than in the series 
case. Parallel resistance is not a measure of the circuit loss but 
rather how "tight" it is, (spoken as a non-engineer). You 
should see that Q values now go up with increasing value of 
parallel resistance. 
 
Additionally in this plot I include the phase of the impedance 
(for the Q = 550 case).  The diagram at left indicates why it is 

necessary to keep 
track of the real 
(resistance R) and 
imaginary (reactance 
X) parts of the 
equations.  While 
resistance is a "real" 
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plot on the chart the current versus frequency for the same tank 
with three variations of resistivity which gives three different 
values of Q. It is immediately clear that keeping resistance in 
the circuit low good of the quality of the set. 
 
A copy of the series circuit excel spreadsheet can be found 
here: Series_kjs.xlsx 
 
Having proved that I can simulate a simple series circuit it is 
time to take it up a notch with a PARALLEL circuit. Analysis 
of a parallel is inherently more complicated as it involves 

imaginary, or complex 
numbers. It is necessary to 
keep close track of the real and 
imaginary parts of the 
calculations. Also, the math 
dealing with complex numbers 
is different, especially the 

rules for multiplication and division. See my Appendix at the 
bottom of this page. 
 
I take the tack of starting with the impedances (Z) of the 
components and combining them in parallel. The symbol "||" 
means to combine in parallel. Formulas for this computation as 
follows: 
 
Zs = Zc || Y 
R || Zl 
Y = (R * Zl) / (R + Zl) 
Zs = (Zc * Y) / (Zc + Y) 
 
Where: 
Zl = jwL and 
Zc = -j / wC 
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Notes on Resistors.  
1) Always measure the value of a resistor before using it in a 
prototype circuit. Make sure your volt-ohm meter has a fresh 
battery. 
 
2) In radio sections that operate at high frequencies we want 
resistors whose value does not vary with frequency. Thin-film 
and metal film resistors are preferred to wirewound resistors, 
which are really just lossy miniature inductors! Speaking of 
inductors… 
 

 
Inductors (units: Henries)  
store energy as a magnetic field. They are usually coils of wire 
or other conductive material in various shapes. Inductors have 
a direct current (DC) response and an alternating current (AC) 
response. These responses can be steady state or transient.  
Let’s throw the switch! 
 
When the switch is closed on the circuit below, an equal and 
opposite voltage is “induced” in the inductor. This is induced 
voltage is called “back EMF”. After several time constants, the 
circuit reaches its “steady state”. The magnetic field is 
established and this opposing voltage disappears. If the switch 
is opened, the magnetic field collapses and sparks can ensue! 
There was an old saying, “nature abhors a vacuum”. Magnetic 
fields don’t like suddenly open switches. This is an important 
principle when working with sensitive semiconductor 
components. Fried! 
 
To track voltage in Tidy TINA we add a pin connection  . To 
track current we add an arrow connection seen at the bottom of 
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the circuit. By convention positive current flows from positive 
to negative. Electron vacancies or “holes” move in this 
direction, but real electrons flow the other way. Thanks Ben 
Franklin! 
 

 
Circuit 2: Inductor Transient DC Response 
 
 
Tidy TINA shows us two curves if we request a Transient 
Analysis. The top curve shows the current in the circuit. Since 
a coil is a conductor, keeping the switch on drains the battery. 
The bottom curve shows the induced voltage as it decays over 
time. This transient DC response ends with the steady-state DC 
response. What about AC, the stuff of which radio signals are 
made? 
  
 
Consider the same circuit as before, but this time, we replace 
the DC battery with an AC signal generator and simplify the 
circuit to obtain: 

233 

 

Starting with a series RLC circuit. This circuit is 
straightforward and the math is pretty easy. The formula for 
the current through a SERIES circuit is: 

 
I = V / sqrt[R^2 + (XL - XC)^2] 
 
Since reactances XL = 2pifL and XC = 
1/2pifC, the above formula becomes: 
 
I = V / sqrt[R^2 + (2pifL - 
1/(2pifC))^2] 
 
 

The resonance response with input values often discovered in a 
crystal set, L = 200 uH, C = 105 pF, and R = 6.9 ohms peaks at 
a frequency of 1098 KHz with a Q factor of 200. 
 

 
The above plot shows first that it is indeed straightforward to 
evaluate a circuit in excel, a series circuit anyway. Further, it 
gives an indication as to what visualizations can be made. I 



232 

 

increases with frequency while capacitive reactance decreases.  
Resonance is that frequency where the two reactance’s cancel 
each other leaving only resistance in the circuit.  A little fun 
derivation may be in order. 
 
Looking at reactance’s where f = frequency, L = inductance, 
and C = capacitance: 
 
XL = 2pifL  ... Inductive reactance 
XC = 1/2pifC ... Capacitive reactance, so: 
2pifL = 1/2pifC ... condition of resonance 
 
taking f out of the denominator: 
2pif^2L = 1/2piC 
 
divide both sides by 2piL 
f^2 = 1/2^2pi^2LC 
 
take the square root of each side 
f = sqrt(1) / sqrt((2pi)^2LC) 
 
and simplifying... 
 
f = 1 / 2pi sqrt(LC) 
 
This is the general formula for resonance. 
 
In all the plots from here on I will show sweeps of frequency 
with impedance or current as the dependant variable. The point 
of resonance on each plot should be apparent as that point 
where the dependant variable reaches its maximum value. 
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The AC signal causes the inductor’s magnetic field to 
repeatedly collapse and expand in alternating directions. 
Ohm’s law is constantly running, but now there is a delay. This 
delay is caused by the union of magnetic field workers whose 
boss is Maxwell and whose contact is binding. Forget that. 
Remember this. Voltage E Leads Current I in an inductor. 
 

 
Circuit 3: Inductive AC Response 
 
ELI the ICE man reminds us that voltage leads current by 90� 
in an inductor. This is called phase shift. Radio is all about 
keeping track of phase. We draw voltage in red and current in 



30 

 

blue on the same graph so we can see their relationship in time. 
But what about frequency? 
  
Frequency Response: What Happens When Inductance and 
Resistance Change? 
Now we can play with the inductor and resistor values and see 
what happens in our circuit. We will measure this by 
comparing the gain of various configurations. Gain is the 
amplitude of the signal in a circuit. Gain comes in three 
flavors, voltage gain, current gain and power gain. Power gain 
is voltage gain times current gain. We want to know how the 
gain changes as we change the frequency of our input signal. 
We can determine this quickly with Tidy TINA. First, we fix 
the resistor at 1 Ohms and set the inductor to 1 microHenries. 
Then we ask TINA to compute the AC Transfer 
Characteristics. Voila! We get a graph that yields major 
insight. 
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A graphical look at Resonance 
Kevin Smith 
 
http://www.lessmiths.com/~kjsmith/crystal/resonance.shtml 
 
I write this page in order to review, in my own mind mostly, 
those things which go into radio frequency resonance. My goal 
was to cast into spreadsheet form the formulas and equations 
that determine resonance for simple circuits that one often 
encounters in crystal radio. 
 
On may ask why create spreadsheets to do what SPICE or 
Mathematica can easily do already. As I am addressing a 
crowd who enjoys building their own radios when such can 
easily and cheaply be had at a local store, I think the answer to 
my rhetorical question is clear. But more than just "doing it 
myself", there are good reasons to do so. I have read numerous 
textbook and online discussions of resonance. Most will 
feature "resonance curves" either generic cartoons or SPICE 
plots with no indication of the actual formulas that created the 
plot. I start to think of SPICE as a kind of black box that 
magically produces interesting results even to those with little 
to no understanding of the math inside. 
 
Additionally, those occasional plots with actual scales are for 
values and magnitudes of R, L, and C that have little to do with 
medium wave broadcast band work.  In order to set or adjust 
my expectations, I prefer to see things in the scales I typically 
deal with.  Finally, while SPICE and other software may be 
essential to evaluate complicated circuits, those typically found 
in crystal radio are really not beyond spreadsheet work. 
 
Something about resonance.  An RLC circuit contains both 
inductive L and capacitive C reactance.  Inductive reactance 
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Circuit 4: One milliHenry Inductor Frequency Response 
 
Next we want to know what happens if the inductance 
changes, say, to a thousandth of its value. That would be 1 
microHenry (uH). Again, TINA computes the AC transfer 
characteristic, sweeping the frequency from 1 to 100 
MegaHertz. This feels more like radio! Out pops our next 
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graph. Decreasing the inductance has shifted all our gain 
curves to higher frequencies. 
 
  

 
Circuit 5: One microHenry Inductor Frequency Response 
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Maximum possible secondary current and maximum possible 
voltage across CS, when: 
 
EC / EP =  (1/ 2kc) ∗∗∗∗ √√√√ (LS LP)  =  [√√√√ (QP QS) / 2] ∗∗∗∗ √√√√ (LS LP) 
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-  goes to zero at unity coupling 
-  equals 3.01 dB (50 percent loss) at critical 
 coupling 
-  becomes infinite at zero coupling. 

 
If primary power held constant by adjusting the primary 
voltage as coupling is varied, then secondary voltage, current, 
power and power transfer all increase with increasing 
coupling.  There are no maxima at critical coupling -- just the 
characteristic 3 dB power transfer loss. 
 
Coupled Resonant Circuits, from Terman, p. 154, ff. 
 

 
The coupling coefficient is: 
 
 k  =  M / √√√√(LP LS) 
 
Voltage ratio: 
 
 EC / EP =  - √√√√(LS LP) ∗∗∗∗ k / [k2 + 1/ (QP QS)] 
 
Voltage ratio is maximum when: 
  
 k  =  kc  =  1 / √√√√(QP QS),    and 
 
 ωωωωM  =  √√√√(RP RS) 
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Now we can run different cases for hours, and trust me, I have. 
The trick is to focus on essential relationships. What happens if 
we change the resistor value but not the inductor? 
  
Let’s return the inductor to 1 milliHenry and change the 
resistance from 1 to 100 Ohms. What happens? How does 
increased input resistance affect frequency response? 
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Circuit 6: Inductive Frequency Response – Increased Series 
Resistance 
 
If we compare Circuit 4 and Circuit 6, there is a loss in current 
gain as a direct consequence of the resistor. That makes sense. 
So to first order, we observe that with respect to voltage we 
have a high pass filter – so named because high frequencies are 
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Resistance and reactance components of the coupled 
impedance (see 1.) are: 
 
 Resistance component:    (ωωωωM) 2__ ∗∗∗∗  RS 
    RS

2 + XS
2  

 
 Reactance component: -j   (ωωωωM) 2_  ∗∗∗∗  XS 
    RS

2 + XS
2  

 
RS and XS are resistance and reactance components of ZS.   
 
The effect of the secondary on the primary is exactly as if 
these components had been inserted, in series, into the primary 
circuit.  The energy and volt-amperes consumed by the 
primary current flowing through this hypothetical resistance 
and reactance represent the energy and reactive volt-amperes 
that are transferred to the secondary circuit. (Alternatively, ZP 
+ (ωωωωM) 2 / ZS can be calculated directly using standard 
complex algebra.) 
 
When primary and secondary are both resonant at the same 
frequency, XS equals zero, the reactance component equals 
zero, and coupled impedance equals the resistance component, 
(ωωωωM) 2 / RS. 
 
If, further, the coupling is critical, the coupled impedance is 
simply RP. 
  
If input voltage is held constant and coupling is varied, then 
primary and secondary currents and powers and secondary 
voltage all change with coupling. 
Secondary voltage, current and power all reach maximum 
values when coupling is critical.  Power transfer loss (from 
primary to secondary): 
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ZS = series impedance of secondary when considered  
by itself 

 
2. The voltage induced into the secondary by primary 
current, IP, has a magnitude, ω M IP, and lags the current that 
produces it by 90 degrees.  The equivalent secondary circuit is: 

 
(IP is  the primary current after the coupled impedance from 
the secondary has been factored in.) 
 
3. The secondary current is exactly the same current that 
would flow if the induced voltage, ES, were applied in series 
with the secondary and with the primary absent. 
 
An alternate form of the equivalent secondary circuit is: 

 
(ZP is the primary series impedance before the coupled 
impedance from the secondary is factored in.) 
 

35 

 

passed and low frequencies are blocked. With respect to 
current, we have a low¬¬-¬¬¬¬pass filter, and with respect to 
power, we have a band-pass filter. Interesting, no? 
 
   

 
Inductor Calculations 
 
Inductors are like resistors when it comes to equivalent 
circuits. 
 

 
Adding two inductors in series gives the equivalent inductance 
of the pair: 
 
 

21 LLLseries +=  

Formula: Series Equivalent Inductance 
  

  

 
Use the product over sum for inductors in parallel: 
 
 

21

21

LL

LL
Lparallel +

=
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Formula: Parallel Equivalent Inductance 
 
 
Transformers are inductors that are magnetically coupled by 
their proximity to each other. We will discuss them in more 
detail later. 
 
Inductors have a kind of imaginary AC resistance called 
inductive reactance that has units of Ohms.  
 
  

LfX L π2=  
Formula: Inductive Reactance 
 
Inductive circuits have a time constant that we alluded to 
above. This is the time it takes for the current to build up to 
63.2% of its steady state value.  The units are seconds.  
 

 

R

L
tL =

 

Formula: Inductive Time Constant 
 
By choosing the right value of inductors, we can tailor the 
frequencies we block or pass using “analog filtering”. More on 
that and its upscale digital cousin in a moment. Take a break. 
Don’t become incapacitated! 
  

 
 Capacitors (Farads) 
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Chapter 2-3  Coupled Circuits 
 
Inductively Coupled Circuits -- from Terman, p. 149, ff.  
See also Landee, Davis and Albrecht, Section 13. 
 
Terman Model: 

 
Pertinent mesh equations: 
 
 EP  = IP ZP + jωωωω M I S 
 ES  =  - jωωωω M I P  = IS ZS induced voltage in  
 secondary 
 
1. The effect of the presence of the secondary, coupled to 
the primary, is to add a series impedance, (ωωωωM) 2 / ZS, to the 
primary. 

 
 M = mutual inductance 
 ω = 2π ∗ frequency  
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- the coupled impedance components are added to the primary 
circuit impedance components to give the complex impedance 
of the primary. 
 
- magnitude of the total primary current 
 
- the current flow divides going through "Lp", thus the actual 
current through the L-R branch (through L) is proportional to 
the ratio of the L-R branch admittance magnitude to the overall 
"Lp" admittance magnitude: 
 
L-R branch current  =  total primary current * | Y (L-R branch) 
|  /  | Y (Co branch) + Y (L-R branch) |  (Note, the L-R branch 
current can actually exceed the total primary current due to the 
"tank" effect of the Co || (L-R) network.) 
 
- the voltage induced into the secondary Es is calculated (step 
2, above)  
 
The voltage |V2| across load resistor Rload is Es times the ratio 
Rload / |total sec. impedance|. 
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store energy as an electric field. They consist of plates of foil 
separated by an insulating or dielectric material. Like their 
inductive counterparts, capacitors have a direct current (DC) 
response and an alternating current (AC) response. 
 

 When the switch is closed, there is a 
surge of current until charge 
accumulates on the plates of the 
capacitor. After several time 
constants, the circuit reaches “steady 
state”. The electric field is 
established and the current surge 
disappears. If the switch is opened, 

nothing happens but the capacitor remains fully charged! A 
large capacitor can shock you! 
 
  

 
Circuit 7: Capacitor Voltage and Current Vs. Time, Transient 
DC Response 
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This simulation uses a 1-Farad capacitor, which is physically 
large, about the size of a large soup can. In radio, we typically 
work with much smaller values as we shall soon see. The 
principles and response curves are similar; the time constants 
are much shorter. Remember these units and abbreviations; 
you will use them often, especially nano and pico. 
 
Unit Abbrev. “Of a Farad” Multiplier
 Comment 
Farad F 1 1
 Huge! 
milliFarad mF 1 thousandth 10-3
 Big! 
microFarad µF 1 millionth 10-6
 Pwr. Sup. 
nanoFarad nF 1 billionth 10-9
 Various 
picoFarad pF 1 trillionth 10-12 RF 
freq. 

 
Table 1: Unit Prefixes, Abbreviations and Multipliers 
  
 
 Consider the same circuit as above, but we replace 
the DC battery with an AC signal generator like so. 
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The complex impedance and admittance of primary and 
secondary coils "Lp"  and "Ls" are: 
 
Z  =  R / [(1 - ωωωω2 LCo)2 + ωωωω2 Co2R2]  
 
 +  j ∗∗∗∗ ωωωω [L(1 - ωωωω2 LCo) - CoR2] / [(1 - ωωωω2 LCo)2 + ωωωω2 Co2 R2] 
 
 
Y  =  R / [R2 + ω2 L2]  -  j ∗∗∗∗ ωωωω[L(1 - ωωωω2 LCo) - CoR2] / [R2 + 
ω

2 L2] 
 
 
The spreadsheet requires the following input data: 
 
 L , Co and, at each frequency, R for coils "Lp" and "Ls."  (L's 
are true inductances.) 
 
Coupling coefficient k or mutual inductance M. 
 
Residual circuit resistances (if any) Rpri  and Rsec. 
 
 
The spreadsheet proceeds by calculating  
 
- the complex impedance and admittance of the primary coil 
"Lp" 
 
- the admittance calculation is checked by calculating the 
admittances of the parallel legs in "Lp":  the Co leg  and the 
series L-R leg. 
 
- the complex impedance of secondary coil "Ls" 
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Resistance and reactance components of the coupled 
impedance are: 
 
Resistance component:    (ωωωωM) 2__ ∗∗∗∗  RS 
  RS

2 + XS
2  

 
Reactance component: -j   (ωωωωM) 2_  ∗∗∗∗  XS 
  RS

2 + XS
2  

 
RS and XS are the resistance and reactance components of ZS.   
 
The effect of the secondary on the primary is exactly as if 
these components had been inserted, in series, into the primary 
circuit.  The energy and volt-amperes consumed by the 
primary current flowing through this hypothetical resistance 
and reactance represent the energy and reactive volt-amperes 
that are transferred to the secondary circuit. (Alternatively, ZP 
+ (ωM)2 / ZS can be calculated directly using standard complex 
algebra.) 
 
2.  The voltage Es induced into the secondary by primary 
current, IP, has a magnitude, ωωωω M I P, and lags the current that 
produces it by 90 degrees.  IP is  the primary current after the 
coupled impedance from the secondary has been factored in. 
 
3.  The secondary current is exactly the same current that 
would flow if the induced voltage were applied in series with 
the secondary and with the primary absent. 
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Circuit 8: Capacitive AC Response 
 
The AC signal causes the capacitor’s electric field to 
repeatedly collapse and expand in alternating directions. 
Ohm’s law is constantly running, and again there is a phase 
delay. Current Causes Voltage in a capacitor. The word 
“Causes” is just a hack so that we remember the C for 
Capacitor in the famous ELI-the-ICE-man phrase that reminds 
us that voltage leads current in inductors and current leads 
voltage in capacitors. 
  
 

 Frequency Response: What Happens When 
Capacitance and Resistance Change? 
Just like before we play with capacitance and 
resistor values to see what happens in our circuit. 
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Again, we will measure this by comparing the gain of various 
configurations. First, we fix the resistor at 1 Ohms and set the 
capacitor to 100 uF. Then we ask TINA to compute the AC 
Transfer Characteristic. A graph again provides insight: 
 
 

 
Circuit 9: 100 uF Capacitor Frequency Response 

 
 As before we want to know what happens if the 
capacitance changes, this time to a hundredth of its 
value. We set the capacitor to 1 uF (1 microFarad). 
Again, TINA computes the AC transfer 
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Terman Inductive Coupling Model 
Mike Tuggle 
(Personal Comm) 

 
 
While the primary and secondary circuit impedances involve 
the Co || (L-R) networks "Lp" and "Ls", we assume that the 
coupling between circuits is a function solely of true 
inductances L1 and L2 and their mutual inductance M. 
 
The basis of the calculation is drawn from F.E.Terman, Radio 
Engineers' Handbook, 1st ed., 1943, p. 148 ff: 
 
1.  The effect of the presence of the secondary, coupled to the 
primary, is to add a series impedance, coupled Z = (ωωωωM) 2 / 
ZS, to the primary, where: 
 
 M  = mutual inductance 
 ωωωω = 2π ∗ frequency  

ZS = series impedance of secondary when 
considered by itself 
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v3 = jω M23 i2 
 

The voltage v1 induced in L1 will be: 
 

v1 = jω M12 i2 
 

Since voltages in series must add up, the voltage across the 
entire coil v1 will be: 
 

v1 = v2 + v3 
 

Putting these voltages in terms of i2 from the previous 
relationships, we get 
 

jωM12 i2 = jωL2 i2 + jωM23 i2 
 

Taking out the common factor jωi2, this simplifies to 
 

M12 = L2 + M23 

 

This page last updated: January 3, 2016 
Copyright 2009, 2016, Robert Weaver 
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characteristic, sweeping the frequency from 1 to 100 
MegaHertz. That radio feeling is coming on strong. 
 
  
 

 
Circuit 10: 1 uF Capacitor Frequency Response 
 

 
 Are you starting to see a pattern? What happens 
if we change the value of the resistor but not the 
capacitor? Let’s return the capacitor to 100 uF 
and change the resistance from 1 to 100 Ohms. 
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What happens? How does increased series resistance affect 
circuit frequency response? 
 

 
Circuit 11: Capacitive Frequency Response – Increased Series 
Resistance 
 
If we compare Circuit 9 and Circuit 11, there are two effects of 
keeping the same capacitor and increasing the resistance. 
Current gain decreases. That makes sense. The second effect is 
to shift the curves to the left. It looks like we increased the 
capacitance, but we didn’t. 
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components. To develop formulae to find the required 
component values is beyond the scope of this discussion. In 
this case we are better off availing ourselves of a spreadsheet 
using these formulae, and then plugging in various values until 
we have the desired frequency range. If it turns out that the 
practical values of inductor and bandspread capacitor we have 
to work with don’t give a narrow enough frequency range, we 
can of course, reduce the range of the bandspread capacitor as 
we did in Parts 1 and 2 by adding a padder and/or trimmer. 
 
Acknowledgement 
 
I would like to express my thanks to Mike Tuggle who 
provided valuable feedback and also performed SPICE 
simulations verifying the formulae. 
 
Appendix 
 
Derivation of Mutual Inductance Between a Coil and a Section 
of the Same Coil 
 
Using the same notation as used previously, L1 is the 
inductance of the entire coil, L2 is the inductance of the 
bottom section, and L3 is the inductance of the top section. 
 
If an AC voltage source v2 is impressed across L2, the current 
i2 will be: 
 

i2 = v2/(jωL2) 
 

and hence 
 

v2 = jωL2 i2 
 

The voltage v3 induced in L3 will be: 
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    (31) 

where the coupling coefficient k is given by: 

 
and then (31) can be solved for frequency using the usual 
quadratic formula: 

 
where: 

 
Having calculated x from the above, the resonant frequency F 
will be 

 
where F is in Hz, and the other component values are given in 
Farads and Henries. 
 
For convenience, the calculation may be done using picofarads 
and microhenries, but the resulting frequency will then be in 
Gigahertz, and therefore will need to be multiplied by 
1,000,000 to get kHz. Hence: 

 
In contrast to Parts 1 and 2, where we selected an arbitrary 
frequency range and then developed formulae to find the 
necessary components values, here we have developed a 
formula to find the resonant frequency from a given set of 
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We observe that our capacitor drains more slowly when the 
resistance is higher. In an opposite sense to inductors, 
capacitors are a low-pass filter with respect to voltage and a 
high-¬¬¬¬pass filter with respect to current. With respect to 
power, we have a band-pass filter as before. 
 

 
Capacitor Calculations 
Capacitors are the opposite of inductors and resistors when it 
comes to equivalent circuits. 
 

  

  
Because it looks like increasing plate area, adding two 
capacitor values gives the PARALLEL equivalent capacitance: 
 
 

21 CCCparallel +=  

Formula: Parallel Equivalent Capacitance 
 
   

 
Use the product over sum for capacitors in SERIES: 
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21

21

CC

CC
Cseries +

=
 

Formula: Parallel Equivalent Inductance 
 
There isn’t the capacitive equivalent of a transformer.  
 
Capacitive circuits have a time constant. This is the time it 
takes for the voltage to build up to 63.2% of its steady state 
value.  The units are seconds.  
 
 RCtC =  

Formula: Capacitive Time Constant 
 
 
Capacitors also have a kind of imaginary AC resistance called 
capacitive reactance that has units of Ohms.  
 
 

Cf
X L π2

1=
 

Formula: Capacitive Reactance 
 
That’s it for capacitance right now. Consult the references in 
the last chapter if you want to delve in deeper than time allows 
here. 
  
 
Summary – Capacitance and Inductance: 
The figure below summarizes what we have just discovered by 
direct simulation. Inductors and Capacitors are the inverses of 
each other. This is an idea as deep as the electron itself.The left 
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aiding or opposing, and the sign and value of M12 will be self-
evident. 
 
If we are dealing with the single tapped winding of the circuit 
in figure 1, then we can directly measure the values of L1, L2 
and L3. 
 
Then the mutual inductance between L2 and L3, is 

 
And it can be shown (see Appendix below) that the mutual 
inductance between L1 and L2 is 

 
Hence: 

 
Now that we have determined M12 by one of the above 
methods, the coupling coefficient is then given by: 

 
or combining these two formula, we get: 

 
This now gives us all the information required to calculate 
resonant frequency of the bandspread tank circuit. 
 
 

Summary 

 

The relationship between component values, and resonant 
frequency of a tapped coil bandspread circuit has been given 
by formula (31): 
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Note, that a quadratic equation will generally have two 
solutions because the square root portion can be either positive 
or negative. For normal situations, the form given above will 
provide the correct frequency. The other result is equally valid 
mathematically, and will give a much higher resonant 
frequency which we may interpret as a parasitic. Therefore, it 
may be prudent to ensure that related circuit components are 
selected to prevent operation at undesired frequencies. 
 
Now, we can plug the component values into the above 

formula and solve for ω2, and consequently solve for ω and 
frequency. 
 
The only value that will not be readily known is the coupling 
coefficient. However it can be calculated from the other coil 
parameters. 
 
If we are dealing with the isolated windings of the circuit in 
figure 2, then we can measure the inductance of the two 
windings separately, and then connect them in series, and 
measure them again. Using the following formula, the mutual 
inductance can be calculated: 

 
Hence: 

 
The contribution due to M12 will be positive or negative 
depending on whether the polarity of the series connections are 
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column shows a capacitive circuit and the right column shows 
its inductive counterpart. The component values are 
summarized in the lower left corner of each diagram. As 
before voltage gain is red, current gain is blue, and power gain 
is yellow. 
 

 
Figure 8: Side-By-Side Comparison - Capacitance and 
Inductance 
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RLC Behavior – Parallel Case 
Consider an RLC circuit where the inductor and capacitor are 
in parallel. The following figures catalog voltage, current and 
power gain as we vary component values. You can reproduce 
these results in Tidy TINA and see which values result in 
which curves, a worthwhile bit of fun. The flat line in each 
image is the gain for the source, set to 1 milliVolt to simulate a 
strong radio station. 
 

 
Circuit 12: RLC Circuit – Parallel LC 
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     (26) 

Next, we invert the formula so that we can combine the 
parallel impedances: 

  (27) 
Also note that the reciprocal of the impedance is the 
admittance, and at parallel resonance the admittance 1/ZN 
(neglecting any resistive components) will be zero. Hence: 

  (28) 
Capacitive reactance is given by: 
 

  ZC = – j/(ωC) = 1/(jωC) 

 

Substituting this for the ZCx terms in the formula: 

  (29) 
Multiplying everything by the denominator of the fraction: 

  
    (30) 
and then multiplying by jωCB we get a relatively simple 
formula: 

 
    (31) 
Since there are no ω or ω3 terms we can solve this as yet 
another quadratic equation: 

 
where 
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Note that when we convert from impedance to capacitance, 
1/n2 becomes n2. Also, since n=N2/N1, and we assume that 
because N2 represents the tapped part of the coil in the original 
circuit, it is smaller than N1. Hence, n will be less than 1. 
Therefore, when CB is transferred to the primary side, its 
effective value becomes smaller. 
 
We have demonstrated that if the coupling coefficient is 1, 
then the equivalent circuit is reduced to the secondary 

impedance multiplied by the 
turns ratio and transferred to 
the primary in parallel with 
the primary inductance and 
capacitance, which agrees 
with traditional transformer 
theory. The capacitor CB on 
the secondary side can be 

scaled by multiplying by n2 and placed in parallel with CA on 
the primary side. However, it's worth noting one important 
fact. In traditional transformer theory, the self inductance of 
the primary is generally considered much higher than the 
transferred impedance from the secondary side, and is often 
neglected. However, we can't neglect it in our case, since it 
forms the inductive part of the resonant circuit. 
 
Since we have carried the effect of the coupling coefficient k 
through to formula (21), we can go back a few steps and see 
the effect of a coupling coefficient less than 1. 
 
Starting with (21) again: 

   (21) 

First we combine the common ω2L1L2 terms 
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Figure 9: RLC Circuit – Parallel LC – Voltage Gain 
 

 
Figure 10: RLC Circuit – Parallel LC – Current Gain 
 



48 

 

 
Figure 11: RLC Circuit – Parallel LC – Power Gain 
  
RLC Behavior – Series Case 
Consider an RLC circuit where the inductor and capacitor are 
in series. Note the difference in the response curves in series 
versus parallel components. You can right click a specific 
curve in Tidy TINA to discover the RLC values that gave rise 
to it. One thing you will notice is that while the parallel case is 
a band-stop filter for RF power, the series case is a band-pass 
in most cases. The peakiness of the filter is the Q or Quality 
Factor of the resonant circuit. More on that later. Notice that 
series resistance hurts performance of the band-pass filter, 
turning it into a band-stop filter! Not good for tuning in your 
favorite crystal radio station. Again, we set the source to 1 mV 
to simulate a strong station. We will make those conditions 
more severe later. 
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Taking everything on the right to a common denominator: 
 

 
 

   (20) 
 

Remembering that j2=-1: 

 (21) 
Notice that in the numerator, the first and last terms will cancel 
each other out when k=1. Let's assume for the moment that this 
is the case. Then we are left with: 

  (22) 
Also when k=1, the n2 relationship exists between inductance 
values as previously mentioned: 
 
L2/L1 =(N2/N1)2=n2 
 
where we define n as the turns ratio. Substituting L2/n2 for L1 

  (23) 
Notice that we now have a fraction in the form of AB/(A+B) 
which is the formula used when combining parallel 
impedances. Therefore, this is equivalent to having A and B in 
parallel. Hence: 

  (24) 
or 

  (25) 
 

So, for the case of k=1 (which would generally apply in the 
situation of a coil on a ferromagnetic core), we can redraw our 
circuit as shown in figure 5. 
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From this we can define Z', the coupled impedance as: 

   (16) 

 

Using equation (16) we can simplify the circuit of figure 3 into 
a single loop as shown in figure 4. 
 
In summary then, the effect that the current flowing in the 
secondary circuit has on the primary circuit can be treated as 
another voltage drop VZ' due to an impedance Z' applied to the 
primary circuit as shown in figure 4. Here, Z' is placed in 
series with the other primary circuit components, and 

completely accounts for the 
effect due to the secondary 
circuit. We have now reduced the 
original two loop circuit to a 
single loop circuit. 
 
The net impedance ZN of the 
primary circuit is: 

  (17) 
where ||  indicates components combined in parallel. 
 
Substituting (11) into (17) we put M in terms of L1 L2 and k. 

  (18) 
If we neglect any resistance in the circuit, then the impedances 
are purely reactive. The impedance of an inductor is given as: 
 

  Z=jωL 
 

Hence: 

  (19) 
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Circuit 13: RLC Circuit – Series LC 
 
 

 
Figure 12: RLC Circuit – Series LC – Voltage Gain 
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Figure 13: RLC Circuit – Series LC – Current Gain 
 

 
Figure 14: RLC Circuit – Series LC – Power Gain 
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Now, let us assume that a sinusoidal alternating voltage VT is 
applied across terminals T1 and T2. This causes an alternating 
current i1 to flow in the primary circuit. This is illustrated in 
figure 3, which shows the circuit components as impedances. 
 
From the previous definition of mutual inductance, then this 
alternating current induces a voltage VZ2 in the secondary 
circuit across Z2, which in turn causes a current i2 to flow in 

the secondary 
circuit. 
 

Now, current i2 
in the secondary 
also induces a 
voltage VZ1 
back in the 

primary across Z1. 
 
The voltage and current relationships are given by the 
following formulae: 

   (12) 

   (13) 

   (14) 
The second term in equation (12) shows that the effect of the 
secondary circuit corresponds to a voltage drop. We can 
substitute in equations (13) and (14) to get this voltage drop in 
terms of i1. 
 

 
or 

   (15) 
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L2/L1 =(N2/(N2 +N3))2=(N2/N1)2 

 

etc. 
 
However, except as specifically noted below we will not make 
any assumptions about the  value of the coupling coefficient. 
 
Note that L1 is not equal to L2+L3 (except when k=0). The 
inductance of the entire coil is, in fact, given by: 
 

L1=L2+L3+2M23 

 

We will leave the circuit of Figure 1 for the time being, and 
deal with an equivalent coupled circuit consisting of 
completely separate windings as shown in Figure 2. 
 
In this circuit, we will still assume that even though the coils 
are separate, they are still inductively coupled. Notice also, we 
keep the same terminology between figures 1 and 2 such that 

CA is still connected 
across L1 and CB is still 
connected across L2. We 
will also assume that L1 
has the same number of 
turns in both figures and 
L2 has the same number 
of turns in both figures. 
Consequently, for the 

purpose of this analysis, both circuits will behave essentially 
the same. The reason for separating the bandspread section of 
the circuit into an electrically isolated winding is to make the 
circuit analysis a bit simpler to follow. 
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 Diodes 
do not store energy like capacitors and inductors. They are 
one-way valves for the flow of current. They are arguably the 
most important single component in radio because of the 
multiple purposes they serve. Diodes are semiconductors 
consisting of a P-N junction doped to attain desireable 
characteristics. Like their siblings, diodes have a direct current 
(DC) response and an alternating current (AC) response. These 
responses can be steady state or transient.  Let’s throw the 
switch! 
 
Notice that the circuit below uses two single pole double throw 
switches connected so that we can switch the polarity on the 
diode. We retain the series resistor as a current-limiting 
resistor, although in a real circuit, say with a light-emitting 
diode, the value would be considerably higher, between 500 
and 2000 Ohms to prevent the diode from burning out. 
 
In this simulation we assume the diode can take whatever the 
flow of current is and we observe the transient DC response for 
two cases. The first case when both switches are down, 
corresponds to the normal polarity of DC voltage seen in 
previous examples. The diode is positioned so that this is a 
forward voltage corresponding to the direction in which the 
diode allows current to flow. The current curve is blue and the 
forward voltage curve is red. Notice that the diode takes only a 
few picoseconds for the diode to switch on. The time it takes a 
diode to turn on is an imporant parameter of the diode, 
especially for radio work. 
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Circuit 14: Diode Transient DC Response – Forward Current 
 
 
Now let’s reverse the position of both switches to simulate 
flipping a double pole double throw (DPDT) switch. This 
reverses the polarity of the battery. What do think the curves 
will look like?  
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   (10) 

and conversely 

 
where the subscripts 1 and 2 designate the parameters of the 
first and second coil respectively. M is the mutual inductance 
between the two coils, and the voltages and currents are 
sinusoidal at an angular frequency ω=2πf. (ω is the lowercase 
Greek letter omega.) If the two coils are perfectly coupled, 
then 

 
If they are not perfectly coupled then we introduce a coupling 
coefficient into the relationship thus: 

   (11) 

where k ranges between zero (no coupling at all) and one 
(perfect coupling). 
 
From Figure 1: 
 
L3 is the inductance of the upper section of the coil, and has 
N3 turns 
 
L2 is the inductance of the bottom section of the coil, and has 
N2 turns 
 
L1 is the total inductance of the whole coil and has 
N1=N2+N3 turns 
 
If the coupling coefficient is one, then there is a direct 
relationship between number of turns and inductance, and the 
following relationships apply: 
 

L3/L2=(N3/N2)2 
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linear relationship between frequency and tuning capacitance, 
as the following graph illustrates: 
 

 
 

In this analysis we will treat the coil as an autotransformer 
keeping in mind that traditional transformer theory diverges 
somewhat from loosely coupled coil theory. With transformer 
theory, the coupling coefficient between windings is nearly 
unity, which allows for a few simplifications. Therefore, in this 
analysis, we will need to adjust the model to account for the 
fact that the sections of the coil are loosely coupled. (This 
work is based largely on the information provided in the 
classic texts: ‘Radio Engineering’ and ‘Radio Engineer’s 
Handbook,’ both by Frederick E. Terman.) 
 
When two coils are inductively coupled, then a current in one 
coil will induce a magnetic flux in the other coil and vice 
versa. When the current in one coil changes, the flux changes, 
and the changing flux will induce a voltage in the other coil 
according to this relationship: 
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Circuit 14: Diode Transient DC Response – Reverse Current 
 
 
 
This case shows the diode in the direction it does not want to 
conduct. There is a momentary surge of current until the diode 
turns off. Note that it takes this diode longer to turn off than it 
does to turn on – in the simulation at least. About a 
nanosecond. Do these curves remind you of anything familiar? 
 
Now let’s replace the DC battery with an AC signal generator 
and simplify the circuit to. We don’t need the DPDT switch, 
because the AC signal generator is doing that for us. The 
simplified circuit looks like this: 
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Circuit 15: Diode AC Circuit 
 
 
Let’s run the signal generator at a low frequency, say 60 Hz. 
This is the frequently encountered in power supplies running 
from wall current in the US after a step-down transformer. We 
obtain the expected and classic waveform for half-wave 
rectification of an AC signal. 
 

 
Figure 15: Diode 60 Hz Frequency Response 
 
Now let’s run the frequency up to the high end of the audio 
sampling spectrum, say 44 kHz. Notice that we start 
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Using a Bandspread Capacitor 
Robert Weaver 
 
http://electronbunker.ca/eb/Bandspreading_3.html 
 
Connected to a Tap on the Tank Coil 
  
Here in Part 3, we take off in another direction. We are going 
to analyze a method of bandspreading where the bandspread 
capacitor is connected to a tap on the tank inductor, and a 
bandset capacitor is connected across the entire coil. This 
configuration is shown in Figure 1. 
 

This is a system that has 
been used on both 
commercial and 
homebrew shortwave 
receivers dating back to 
the 1930’s. The circuit is 
as shown in figure 1. In 
this circuit, the main 
“Bandset” variable 

capacitor is CA, and may be either fixed or variable, while the 
“Bandspread” capacitor CB is variable. 
 
In essence, the goal is to find a relationship between circuit 
impedance across terminals T1 & T2 and frequency for given 
values of capacitance and inductance. 
 
Before we go any further, we may ask ourselves why we want 
to do something that looks quite a bit more complicated than 
the bandspread arrangements we have already looked at. The 
answer, as we will discover, is that this gives a remarkably 
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encountering some switching noise as we approach the 
switching speed of the diode. 
 

 
Figure 16: Diode 44 kHz Frequency Response 
 
Finally let’s run the diode at a frequency we might encounter 
in our crystal radio, say the middle of the AM band: 
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Figure 17: 1N1183 Diode 1 MHz Frequency Response 
 
Now our signal is dominated by switching noise. This 
particular diode, can’t switch fast enough to rectify the signal. 
Notice the ringing. The only way to see it is to integrate using 
the Gear method with a 6th order integration. Changing the 
diode to a faster 1N4150 largely eliminates the ringing. 
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Figure 18: 1N4150 Diode 1 MHz Frequency Response 
  

 
Diode Calculations 
 
For low frequency applications diodes can be stacked in series. 
 
    
 
Connecting two diodes in series doubles the peak reverse 
voltage (PRV) rating: 
 
 

21 PRVPRVPRVseries +=  

Formula: Series Equivalent Inductance 
 
Connecting two diodes in parallel doubles the current rating: 
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21 III parallel +=  

Formula: Series Equivalent Inductance 
 
 
It  the first case it is necessary connect a high value resistor 
across eacg  diode to minimize transients and equalize slight 
differences in the characteristics of the diode. One rule of 
thumb is to multiply the PRV of the diode by 400. In the 
second a low-value resistor, usually less than an ohm, is 
connected in series with the pair of diodes. 
 
 
Summary 
 
This concludes chapter one. We have seen a simple radio, a 
crystal radio, and how each of the parts work. Now we will 
look in detail at fundamentals of software defined radio, 
including software and hardware.  
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Resonant Circuits 
Mouloud Rahmani 
http://mouloudrahmani.com/Electrical/RFMicrowave/Resonant
Circuits.html 
 
 
The resonant circuit is used in electronics systems to 
selectively pass a certain frequency or group of frequencies 
from a source to a load while attenuating all other frequencies 
outside of this passband. 
 

 
 
Bandwidth 
 
The bandwidth of any resonant circuit is most commonly 
defined as being the difference between the upper and lower 
frequency ( f2 −f1) of the circuit at which its amplitude 
response is 3 dB below the passband response. It is often 
called the half-power bandwidth. 
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Q 
 
The ratio of the center frequency of the resonant circuit to its 
bandwidth is defined as the circuit Q. 
Q = fe/(f2 − f1) 
 
Shape Factor 
 
The shape factor of a resonant circuit is typically defined as 
being the ratio of the 60-dB bandwidth to the 3-dB bandwidth 
of the resonant circuit. Shape factor is simply a degree of 
measure of the steepness of the skirts. The smaller the number, 
the steeper are the response skirts. 
 
Insertion Loss 
 
Whenever a component or group of components is inserted 
between a generator and its load, some of the signal from the 
generator is absorbed in those components due to their inherent 
resistive losses. Thus, not as much of the transmitted signal is 
transferred to the load as when the load is connected directly to 
the generator. (No impedance matching function is being 
performed.) The attenuation that results is called insertion loss 
and it is usually expressed in decibels (dB). 
 
The voltage division rule (illustrated in Fig. 2-4) states that 
whenever a shunt element of impedance Zp is placed across 
the output of a generator with an internal resistance Rs, the 
maximum output voltage available from this circuit is: 
Vout =(Vin) Zp/(Rs + Zp) 
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If Zp is a frequencydependent impedance, such as a capacitive 
or inductive reactance, then Vout will also be frequency 
dependent and the ratio of Vout to Vin, which is the gain (or, 
in this case, loss) of the circuit, will also be frequency 
dependent. 
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Notice, in Fig. 2-8, that as we near the resonant frequency of 
the tuned circuit, the slope of the resonance curve increases to 
12 dB/octave. This is due to the fact that we now have two 
significant reactances present and each one is changing at the 
rate of 6 dB/octave and sloping in opposite directions. 
 
As we move away from resonance in either direction, however, 
the curve again settles to a 6-dB/octave slope because, again, 
only one reactance becomes significant. 
 
Loaded Q 
 
The Q of a resonant circuit was defined earlier to be equal to 
the ratio of the center frequency of the circuit to its 3-dB 
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bandwidth. This “circuit Q,” , is often given the label loaded Q 
because it describes the passband characteristics of the 
resonant circuit under actual in-circuit or loaded conditions. 
The loaded Q of a resonant circuit is dependent upon three 
main factors. 

1    The source resistance (Rs). 
 
2    The load resistance (RL). 
 
3    The component Q. 

 

 
 
Raising the source impedance will increase the Q of our 
resonant circuit. 
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Mutual Inductance 
From an unknown text 
Pdf downloaded from BGU Lab 7 web page 
 
http://www.ee.bgu.ac.il/~intrlab/lab_number_7/ 
 
http://www.ee.bgu.ac.il/~intrlab/lab_number_7/Mutual%20Ind
uctance%20and%20coupled%20RLC%20circuits.pdf 
 



196 

 
65 

 

If an external load were attached to the resonant circuit, the 
effect would be to broaden or “de-Q” the response curve to a 
degree that depends on the value of the load resistance. 
 

 
 
The resonant circuit sees an equivalent resistance of Rs in 
parallel with RL, as its true load. This total external resistance 
is, by definition, smaller in value than either Rs or RL, and the 
loaded Q must decrease. If we put this observation in equation 
form, it becomes (assuming lossless components): 
Q = Rp/Xp 
 
This illustrates that a decrease in Rp will decrease the Q of the 
resonant circuit and an increase in Rp will increase the 
circuit Q, and it also illustrates another very important point. 
The same effect can be obtained by keeping Rp constant and 
varying Xp. 
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In most cases, we only need to involve the Q of the inductor in 
loaded-Q calculations. The Q of most capacitors is quite high 
over their useful frequency range, and the equivalent shunt 
resistance they present to the circuit is also quite high and can 
usually be neglected. Care must be taken, however, to ensure 
that this is indeed the case. 
 
Impedance Transformation 
 
Low values of source and load impedance tend to load a given 
resonant circuit down and, thus, tend to decrease its loaded Q 
and increase its bandwidth. This makes it very difficult to 
design a simple LC high-Q resonant circuit for use between 
two very low values of source and load resistance. 
 
One method of getting around this potential design problem is 
to make use of one of the impedance transforming circuits 
shown in Fig. 2-18. 
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dip much between the peaks and the response is close to what 
is ideally required. The bandwidth can be estimated as BW = 
kfo, where k is the coefficient of coupling and fo is the 
resonant frequency of each circuit. 
 
Figure 3 shows an example of secondary circuit response Vc(f) 
(voltage measured on capacitor) for different coupling 
coefficients. 
 

 
Fig 3 

 
(R = 250 Ohm, C = 5 nF, L = 0.15 H, Vin =5V) 
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inductance (Ze ≈ Z1 + ω2M2· jωC ), and an inductance as a 
capacitance (Ze ≈ Z1 + ω2M2/ jωL ). 
 

 
Fig 2 

 
At resonance, the reflected impedance is resistive, and acts to 
lower the Q of the primary, and thereby to reduce the output. 
This is counteracted by the increased coupling, which 
increases the output. The lower Q gives a wider passband. At 
frequencies lower than exact resonance, the reflected 
impedance is inductive, which adds to the inductance of the 
primary and resonates at a lower frequency, producing a peak 
in the output. At frequencies higher than exact resonance, the 
reflected impedance is capacitive, which cancels part of the 
inductance and causes the circuit to resonate at a higher 
frequency, producing the other peak. 
 
As the coupling is reduced, the response becomes single-
peaked at critical coupling, and then decreases as the coupling 
is made even looser. 

The critical coupling coefficient is given by . 
 
in terms of the Q's of the individual tuned circuits. 
 
Frequently it is assumed that optimum coupling occurs for k ≈ 
1.5kc. In this case, the response is double-peaked, but does not 
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    For the tapped- C transformer (Fig. 2-18A), we use the 
formula: 
 
    R's = R's (1 + C1/ C2)^2 
 
    The equivalent capacitance (CT ) that will resonate with the 
inductor is equal to C1 in series with C2, or: 
 
    CT = C1C2/(C1 + C2) 
 
    For the tapped-L network of Fig. 2-18B, we use the 
following formula: 
 
    R's = R's (1 + n/ n1)^2 
 
Coupling of Resonant Circuits 
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In many applications where steep passband skirts and small 
shape factors are needed, a single resonant circuit might not be 
sufficient. In situations such as this, individual resonant 
circuits are often coupled together to produce more attenuation 
at certain frequencies than would normally be available with a 
single resonator. 
 
The coupling mechanism that is used is generally chosen 
specifically for each application, as each type of coupling has 
its own peculiar characteristics that must be dealt with. The 
most common forms of coupling are: capacitive, inductive, 
transformer (mutual), and active (transistor). 
  
Capacitive Coupling 
 
If capacitor C12 of Fig. 2-19 is too large, too much coupling 
occurs and the frequency response broadens drastically with 
two response peaks in the filter’s passband. If capacitor C12 is 
too small, not enough signal energy is passed from one 
resonant circuit to the other and the insertion loss can increase 
to an unacceptable level. The compromise solution to these 
two extremes is the point of critical coupling, where we obtain 
a reasonable bandwidth and the lowest possible insertion loss 
and, consequently, a maximum transfer of signal power. 
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Thus, the solution from which the frequency response can be 
obtained is: 
 

  (4) 
 

Resonance occurs at the 2 frequencies given by the following 
equations: 
 

 
 

Here, the coupling coefficient k = M/L (for L1=L2). 
 
The behavior of the circuit can be understood qualitatively on 
the basis of the reflected impedance (or coupled impedance). 
 
A transformer (or inductively coupled circuit) is said to 
"reflect" impedance in the secondary into the primary circuit. 
Consider the coupled circuits shown in Fig 2. The positive 
direction of the currents is chosen into the polarity mark on the 
generator representing the induced voltages, so that Kirchhoff's 
equations are 
 

 
 
ZM is the mutual impedance jωM, Z1 includes the source 
impedance, and Z2 the secondary load. These equations may 
be solved for the equivalent primary impedance 
 

 
 

The reflected impedance is then ω2M2/Z2. Note that a 
resistance is reflected as a resistance, a capacitance as an 
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The coupling constant is independent of the number of turns in 
a coil. The number of turns in a coil determines the magnetic 
field, which will be produced for a given current. The coupling 
constant is concerned with how the lines of magnetic force 
produced by one coil interact with another coil, and hence the 
coupling constant between two air spaced coils depends only 
on their physical size and disposition in space. Hence to obtain 
the best coupling between primary and secondary in an air-
cored transformer we can only change the size and spatial 
relationships of the coils. 
 
Kirchhoff’s voltage law equations for the primary and 
secondary loops are given by 
 

  (2) 
 

 
 
(it is assumed that R1+RL1 = R2+RL2 =R and L1 = L2). 
We can write these eqs. in the matrix form as follows 
 

   (3) 
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There are instances in which overcoupling or undercoupling 
might serve a useful purpose in a design, such as in tailoring a 
specific frequency response that a critically coupled filter 
cannot provide. 
 
In this section, we will only concern ourselves with critical 
coupling as it pertains to resonant circuit design. 
 
The loaded Q of a critically coupled two-resonator circuit is 
approximately equal to 0.707 times the loaded Q of one of its 
resonators. Therefore, the 3-dB bandwidth of a two-resonator 
circuit is actually wider than that of one of its resonators. Thus, 
the main purpose of the two-resonator passively coupled filter 
is not to provide a narrower 3-dB bandwidth, but to increase 
the steepness of the stopband skirts and, thus, to reach an 
ultimate attenuation much faster than a single resonator could. 
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Notice that even for the critically coupled case, the response 
curve is not symmetric around the center frequency but is 
skewed somewhat. The lower frequency portion of the 
response plummets down at the rate of 18-dB/octave while the 
upper slope decreases at only 6-dB/octave. 
 
Below resonance, we have the circuit of Fig. 2-22A. The 
reactance of the two resonant-circuit capacitors (Fig. 2-19) has 
increased, and the reactance of the two inductors has decreased 
to the point that only the inductor is seen as a shunt element 
and the capacitors can be ignored. This leaves three reactive 
components and each contributes 6-dB/octave to the response. 
 

 
 
Above resonance, the equivalent circuit approaches the 
configuration of Fig. 2-22B. Here the inductive reactance has 
increased above the capacitive reactance to the point where the 
inductive reactance can be ignored as a shunt element. We now 
have an arrangement of three capacitors that effectively look 
like a single shunt capacitor and yields a slope of 6-dB/octave. 
  
Inductive Coupling 
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Two inductively coupled RLC circuits 
Ben‑Gurion University 
 
http://www.ee.bgu.ac.il/~intrlab/lab_number_7/Two%20induct
ively%20coupled%20RLC%20circuits.pdf 
 
Two inductively coupled RLC circuits are shown in Figure 1. 
Having 2 circuits gives 2 resonant frequencies whose 
separation depends on the value of the mutual inductance M 
(the ratio of the voltage in the secondary to the rate of change 
of primary current with time, and the unit is the henry.  This 
has a reactance at the operating frequency Xm = ωM). 
 

 
 

The mutual inductance coupling between primary and 
secondary can be related to their self-inductance by means of 
the coupling constant k: 
 

 
 

Notice, that since k is defining the relationship between 
magnetic flux linkages in the circuit, it can never be greater 
than 1. A value of 1 means that all the flux produced by the 
primary is linked with the secondary and vice versa. A value of 
k greater than 1 would mean that more than all of the flux 
produced by the primary is linked with the secondary. 
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control and high Q are essential to good response and 
selectivity. 
 
If the primary circuit is made to resonate at a different 
frequency from the secondary, audio response is much worse, 
and considerable distortion is likely. Moreover, the response at 
mean frequency is less than it would be if the circuits were 
properly tuned. Air-core transformers are usually made 
adjustable for tuning and coupling. 
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Two types of inductively coupled resonant circuits are shown 
in Fig. 2-23. One type (Fig. 2-23A) uses a series inductor or 
coil to transfer energy from the first resonator to the next, and 
the other type (Fig. 2-23B) uses transformer coupling for the 
same purpose. 
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different values of coupling. If the value of coupling is such 
that 
 

 
 
we obtain a condition similar to that of equation 103, in which 
the maximum power or current is produced in the secondary 
circuit. Maximum current through condenser C2 gives 
maximum voltage E2. This value of coupling is known as the 
critical value. Smaller coefficient of coupling gives a smaller 
maximum value of E2. Greater coefficient of coupling results 
in a "double hump" as shown in Fig. 173. 
 

 
Fig. 173. Response curves for circuit of Fig. 172. 
 
The heights of resonant peaks and frequency distance between 
peaks depend upon circuit Q and coefficient of coupling k. The 
double hump curve of Fig. 173 is desirable because, with 
modulated waves, frequencies in adjacent channels are 
rejected; yet very little attenuation is offered to audio 
frequencies which effectively add or subtract from the carrier 
frequency normally corresponding to resonance. Close tuning 
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 [104a] 

 
 
If Lm >> Ls 

  
 [104b] 
 
Equations 104 (a) and (b) are useful in estimating approximate 
transformer band width. 
 
A tuned air-core transformer often used in receivers is shown 
in Fig. 172. 

 
Fig. 172. Tuned air-core transformer. 
 
Here a sinusoidal voltage E1 may be impressed on the primary 
circuit by a vacuum tube amplifier. Resistances R1 and R2 are 
usually the inevitable resistance of coils, but occasionally 
resistance is added to change the circuit response. The value of 
voltage E2 obtained from this circuit depends on the impressed 
frequency; in Fig. 173 it is shown for resonance at three 

73 

 

 
 



74 

 
187 

 

states that the mutual reactance XM is the geometric mean 
between the two values of resistance. 
 
The ratio of mutual inductance to the geometric mean of the 
primary and secondary self-inductances is the coupling 
coefficient: 
 

   [104] 
 
The value of k is never greater than unity, even when coils are 
interleaved to the maximum possible extent. Values of k down 
to 0.01 or lower are common at high frequencies. 
 
Coupling coefficient is related to untuned transformer open- 
and short-circuit reactance by means of the transformer 
equivalent circuit shown in Fig. 107(a), p. 147. Assume that 
the transformer has a 1:1 ratio, and leakage inductance is 
equally divided between primary and secondary windings. 
Then if L1 and L2 are the self-inductances of primary and 
secondary, respectively, Ls is the total leakage inductance 
(measured in the primary with secondary short-circuited), and 
Lm the mutual inductance, 
 

 

 
 
From equation 104, 
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  [101] 
 
where ω = 2π times operating frequency, and Lm is the mutual 
inductance between the primary and secondary coils. 
 
From equation 101 we see that the voltage in the secondary 
coil is numerically equal to ωLmI1, the product of primary 
current and mutual reactance at the frequency of applied 
voltage E1. The equivalent impedance of the circuit of Fig. 
171 when referred to the primary side is given by 
 

 
 [102] 
 

where . 
 
In the above formulas, the impedances Z1, Z2, and Z' are 
complex quantities whose real and imaginary terms depend 
upon the values of resistance, inductance, and capacitance in 
the circuit. One common practical case arises when the 
primary resistance is zero, or virtually zero, and the secondary 
coil is tuned to resonance so that Z2 is a pure resistance R2. 
Under these conditions, equation 102 reduces to 
 

  [103] 
 
where R' is the equivalent resistance in the primary. 
 
Equation 103 gives the value of mutual inductance required for 
coupling a resistance R2 so that it will appear like resistance R' 
with a maximum power transfer between the two coils, and 
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RESONANCE 
Tony R. Kuphaldt 
http://www.allaboutcircuits.com/vol_2/chpt_6/1.html 
 
6.1 An electric pendulum 
 
Capacitors store energy in the form of an electric field, and 
electrically manifest that stored energy as a potential: static 
voltage. Inductors store energy in the form of a magnetic field, 
and electrically manifest that stored energy as a kinetic motion 
of electrons: current. Capacitors and inductors are flip-sides of 
the same reactive coin, storing and releasing energy in 
complementary modes. When these two types of reactive 
components are directly connected together, their 
complementary tendencies to store energy will produce an 
unusual result. 
 
If either the capacitor or inductor starts out in a charged state, 
the two components will exchange energy between them, back 
and forth, creating their own AC voltage and current cycles. If 
we assume that both components are subjected to a sudden 
application of voltage (say, from a momentarily connected 
battery), the capacitor will very quickly charge and the 
inductor will oppose change in current, leaving the capacitor in 
the charged state and the inductor in the discharged state: 
(Figure 6.1) 
 
The capacitor will begin to discharge, its voltage decreasing. 
Meanwhile, the inductor will begin to build up a “charge” in 
the form of a magnetic field as current increases in the circuit: 
(Figure 6.2) 
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Figure 6.1: Capacitor charged: voltage at (+) peak, inductor 
discharged: zero current. 
 

 
 
Figure 6.2: Capacitor discharging: voltage decreasing, Inductor 
charging: current increasing. The inductor, still charging, will 
keep electrons flowing in the circuit until the capacitor hasbeen 
completely discharged, leaving zero voltage across it: (Figure 
6.3) 
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Air-Core Transformers 
Reuben Lee 
 
http://www.vias.org/eltransformers/lee_electronic_transformer
s_07b_22.html 
 
Air-Core Transformers 
 
Transformers considered hitherto have had iron or ferrite 
cores. A class of transformers is widely used in radio-
frequency circuits without cores or with small slugs of 
powdered iron. In a transformer with an iron core, the exciting 
current required for inducing the secondary voltage is a small 
percentage of the load component of current. In an air-core 
transformer all the current is exciting current and induces a 
secondary voltage proportional to the mutual inductance. 
 

 
Fig. 171. General case of inductive coupling. 
 
Consider the circuit of Fig. 171 in which Z1 is complex and 
includes the self-inductance of the primary coil. Likewise, 
secondary impedance Z2 is complex and includes the self-
inductance of the secondary coil. With a sinusoidal voltage 
applied, Kirchhoff's laws give the following: 
 

 [100] 
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F.E. Terman, "Radio Engineers' Handbook," London, 
McGraw-Hill, 1st ed., Sep. 1950.   P.71 
 
http://www.itermoionici.it/letteratura_files/Radio-Engineers-
Handbook.pdf 
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Figure 6.3: Capacitor fully discharged: zero voltage, inductor 
fully charged: maximum current. The inductor will maintain 
current flow even with no voltage applied. In fact, it will 
generate a voltage (like a battery) in order to keep current in 
the same direction. The capacitor, being the recipient of this 
current, will begin to accumulate a charge in the opposite 
polarity as before: (Figure 6.4) 
 
When the inductor is finally depleted of its energy reserve and 
the electrons come to a halt, the capacitor will have reached 
full (voltage) charge in the opposite polarity as when it started: 
(Figure 6.5) Now we’re at a condition very similar to where 
we started: the capacitor at full charge and zero current in the 
circuit. The capacitor, as before, will begin to discharge 
through the inductor, causing an increase in current (in the 
opposite direction as before) and a decrease in voltage as it 
depletes its own energy reserve: (Figure 6.6) 
 
Eventually the capacitor will discharge to zero volts, leaving 
the inductor fully charged with  
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Figure 6.4: Capacitor charging: voltage increasing (in opposite 
polarity), inductor discharging: current decreasing. 
 

 
 
Figure 6.5: Capacitor fully charged: voltage at (-) peak, 
inductor fully discharged: zero current. 
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When the coils can not rotate but only move along their axis 
(coaxial coils), assuming a distance D between the two coils 
centres, we have: 

 
 
The total inductance value for this case is computed assuming 
a positive mutual inductance (coils not rotated 180°). 
 
References: 
 
[1]  R. Lundin, "A Handbook Formula for the Inductance of 
a Single-Layer  Circular Coil," Proc. IEEE, vol. 
73, no. 9, pp. 1428-1429, Sep. 1985. 
[2]  F.E. Terman, "Radio Engineers' Handbook," London, 
McGraw-Hill, 1st ed., Sep. 1950. 
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rotating a coil 180° gives a variation of the total inductance of 
4Lm. 
 
Two coaxial coils If the two coaxial coils are moved along 
their axis instead (D<>0), the mutual inductance decreaes, 
eventually reaching zero at infinity, but does not change sign. 
This means that there is less variation in the total inductance 
just moving the coils with respect to rotating them. 
  
The form below computes the main parameters for the two 
types of variometer described above. The self-inductances are 
calculated using the formulas in [1], while the mutual 
inductances use the formulas from [2], with some minor 
corrections. 
 
These formulas agree very well with the results of some 
electromagnetic simulations I have done, see the page for 
details. 
 

 

 
In a typical variometer the two coils are concentric (i.e. D=0) 
and the overall inductance is varied rotating the inner coil; in 
this case we have: 
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Figure 6.6: Capacitor discharging: voltage decreasing, inductor 
charging: current increasing. full current through it:  
 
(Figure 6.7) 
 

 
 
Figure 6.7: Capacitor fully discharged: zero voltage, inductor 
fully charged: current at (-) peak. 
 
The inductor, desiring tomaintain current in the same direction, 
will act like a source again, generating a voltage like a battery 
to continue the flow. In doing so, the capacitor will begin to 
charge up and the current will decrease in magnitude: (Figure 
6.8) 
 

 
 
Figure 6.8: Capacitor charging: voltage increasing, inductor 
discharging: current decreasing. 
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Eventually the capacitor will become fully charged again as 
the inductor expends all of its energy reserves trying to 
maintain current. The voltage will once again be at its positive 
peak and the current at zero. This completes one full cycle of 
the energy exchange between the capacitor and inductor: 
(Figure 6.9) 
 

 
 
Figure 6.9: Capacitor fully charged: voltage at (+) peak, 
inductor fully discharged: zero current. 
 
This oscillation will continue with steadily decreasing 
amplitude due to power losses from stray resistances in the 
circuit, until the process stops altogether. Overall, this behavior 
is akin to that of a pendulum: as the pendulum mass swings 
back and forth, there is a transformation of energy taking place 
from kinetic (motion) to potential (height), in a similar fashion 
to the way energy is transferred in the capacitor/inductor 
circuit back and forth in the alternating forms of current 
(kinetic motion of electrons) and voltage (potential electric 
energy).  
 
At the peak height of each swing of a pendulum, the mass 
briefly stops and switches directions. It is at this point that 
potential energy (height) is at a maximum and kinetic energy 
(motion) is at zero. As the mass swings back the other way, it 
passes quickly through a point where the string is pointed 
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Variometer Design 
Claudio Girardi 
http://www.qsl.net/in3otd/variodes.html 
 
Variometer Design 
 
A variometer consists usually of two coaxial coils, connected 
in series, where the coils relative position can be varied in 
some way. If L1 and L2 are the self-inductances of the first 
and second coil and Lm is the mutual inductance between the 
two, the total inductance can be written as Ltot=L1+L2±2Lm. 
The mutual inductance is defined as the flux linked by the 
turns of an inductance when the other carries a unit current; 
this of course depends not only on the coil length and diameter 
but also on their relative position. 
For two coaxial coils, like the ones in the picture, the mutual 
inductance is at maximum when they are also concentrical, i.e. 
D=0. 
 
If the two concentrical coils are rotated, so that their axes are 
not parallel any more, 
the mutual inductance 
decreases, reaching 
zero (almost) when 
the angle is 90°. 
Continuing the 
rotation beyond 90° 
the mutual inductance 
increases again, but 
this time with the 
opposite sign. So, 
according to the 
above formula, 
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straight down. At this point, potential energy (height) is at zero 
and kinetic energy (motion) is at maximum. Like the circuit, a 
pendulum’s back-and-forth oscillation will continue with a 
steadily dampened amplitude, the result of air friction 
(resistance) dissipating energy. Also like the circuit, the 
pendulum’s position and velocity measurements trace two sine 
waves (90 degrees out of phase) over time: (Figure 6.10) 
 

 
 
Figure 6.10: Pendelum transfers energy between kinetic and 
potential energy as it swings low to high. 
 
In physics, this kind of natural sine-wave oscillation for a 
mechanical system is called Simple Harmonic Motion (often 
abbreviated as “SHM”). The same underlying principles 
govern both the oscillation of a capacitor/inductor circuit and 
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the action of a pendulum, hence the similarity in effect. It is an 
interesting property of any pendulum that its periodic time is 
governed by the length of the string holding the mass, and not 
the weight of the mass itself. That is why a pendulum will keep 
swinging at the same frequency as the oscillations decrease in 
amplitude. The oscillation rate is independent of the amount of 
energy stored in it.  
 
The same is true for the capacitor/inductor circuit. The rate of 
oscillation is strictly dependent on the sizes of the capacitor 
and inductor, not on the amount of voltage (or current) at each 
respective peak in the waves. The ability for such a circuit to 
store energy in the form of oscillating voltage and current has 
earned it the name tank circuit. Its property of maintaining a 
single, natural frequency regardless of how much or little 
energy is actually being stored in it gives it special significance 
in electric circuit design.  
 
However, this tendency to oscillate, or resonate, at a particular 
frequency is not limited to circuits exclusively designed for 
that purpose. In fact, nearly any AC circuit with a combination 
of capacitance and inductance (commonly called an “LC 
circuit”) will tend to manifest unusual effects when the AC 
power source frequency approaches that natural frequency. 
This is true regardless of the circuit’s intended purpose. 
 
If the power supply frequency for a circuit exactly matches the 
natural frequency of the circuit’s LC combination, the circuit is 
said to be in a state of resonance. The unusual effects will 
reach maximum in this condition of resonance. For this reason, 
we need to be able to predict what the resonant frequency will 
be for various combinations of L and C, and be aware of what 
the effects of resonance are. 
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be turned into an equation by introducing a constant. Call this 
constant L, the self-inductance (or simply inductance) of the 
coil: 
 

  or  
N

N LI L
I

ΦΦ = =  

 
As with mutual inductance, the unit of self-inductance is the 
henry. 
 
The self-induced emf can now be calculated using Faraday’s 
law: 
 

( ) ( )N LI I
N L

t t t t

I
L

t

∆ Φ ∆∆Φ ∆= − = − = − = −
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∆= −
∆

E
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The above formula is the emf due to self-induction. 
 
Example 
 
Find the formula for the self-inductance of a solenoid of N 
turns, length l, and cross-sectional area A. 
 
Assume that the solenoid carries a current I. Then the magnetic 
flux in the solenoid is 
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• REVIEW: 
 
• A capacitor and inductor directly connected together form 
something called a tank circuit, which oscillates (or resonates) 
at one particular frequency. At that frequency, energy is 
alternately shuffled between the capacitor and the inductor in 
the form of alternating voltage and current 90 degrees out of 
phase with each other.  
 
• When the power supply frequency for an AC circuit exactly 
matches that circuit’s natural oscillation frequency as set by 
the L and C components, a condition of resonance will have 
been reached. 
 
 
6.2 Simple parallel (tank circuit) resonance 
 
A condition of resonance will be experienced in a tank circuit 
(Figure 6.11) when the reactance of the capacitor and inductor 
are equal to each other. Because inductive reactance increases 
with increasing frequency and capacitive reactance decreases 
with increasing frequency, there will only be one frequency 
where these two reactances will be equal. 
 

 
 
Figure 6.11: Simple parallel resonant circuit (tank circuit). 
 
In the above circuit, we have a 10 μF capacitor and a 100 mH 
inductor. Since we know the equations for determining the 
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reactance of each at a given frequency, and we’re looking for 
that point where the two reactances are equal to each other, we 
can set the two reactance formulae equal to each other and 
solve for frequency algebraically: 
 

 
. . . setting the two equal to each other, representing a 
condition of equal reactance (resonance) . . . 
 

 
Multiplying both sides by f eliminates the f term in the 
denominator of the fraction . . . 
 

 
Dividing both sides by 2pL leaves f2 by itself on the left-hand 
side of the equation . . . 
 

 
Taking the square root of both sides of the equation leaves f by 
itself on the left side . . . 
 

 
. . . simplifying . . . 
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The apparatus used in Experiment EM-11B consists of two 
coaxial solenoids. A solenoid is essentially just a coil of wire. 
For a long, tightly-wound solenoid of n turns per unit length 
carrying current I the magnetic field over its cross-section is 

nearly constant and given by
0B nI= µ . Assume that the 

two solenoids have the same cross-sectional area A. Find a 
formula for the mutual inductance of the solenoids. 
 

1 1
1 0 1

1

2 2 2 2 2 1 1 1 2
2 1 0 0

1 1 1 1 1

The magnetic flux in the primary coil is

  where  is the length of the primary coil.

  But :   ;    

N I
A l

l

N N N N I N N
M M A M A

I I I l l

Φ = µ

Φ Φ= Φ = Φ = = µ = µ

 

1(Note how   is independent of the current .)M I
 
Self-Inductance 
 
A current-carrying coil produces a magnetic field that links its 
own turns. If the current in the coil changes the amount of 
magnetic flux linking the coil changes and, by Faraday’s law, 
an emf is produced in the coil. This emf is called a self-induced 
emf. 
 
Let the coil have N  turns. Assume that the same amount of 
magnetic flux Φ links each turn of the coil. The net flux 
linking the coil is then NΦ. This net flux is proportional to the 
magnetic field, which, in turn, is proportional to the current I 
in the coil. Thus we can write NΦ ∝ I. This proportionality can 
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Let the primary coil have N1 turns and the secondary coil have 
N2 turns. Assume that the same amount of magnetic flux Φ2 
from the primary coil links each turn of the secondary coil. 
The net flux linking the secondary coil is then N2Φ2. This net 
flux is proportional to the magnetic field, which, in turn, is 
proportional to the current I1 in the primary coil. Thus we can 
write N2Φ2 ∝ I1. This proportionality can be turned into an 
equation by introducing a constant. Call this constant M, the 
mutual inductance of the two coils: 
 

2 2
2 2 1

1

  or  
N

N MI M
I

ΦΦ = =
 

the unit of inductance is wb
 (H)

A
henry= named after 

Joseph Henry. 
The emf induced in the secondary coil may now be calculated 
using Faraday’s law: 
 

( ) ( )2 2 12 1
2 2
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2
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The above formula is the emf due to mutual induction. 
 
Example 
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So there we have it: a formula to tell us the resonant frequency 
of a tank circuit, given the values of inductance (L) in Henrys 
and capacitance (C) in Farads. Plugging in the values of L and 
C in our example circuit, we arrive at a resonant frequency of 
159.155 Hz. 
 
What happens at resonance is quite interesting. With capacitive 
and inductive reactances equal to each other, the total 
impedance increases to infinity, meaning that the tank circuit 
draws no current from the AC power source! We can calculate 
the individual impedances of the 10 μF capacitor and the 
100mH inductor and work through the parallel impedance 
formula to demonstrate this mathematically: 
 

 
 
As you might have guessed, I chose these component values to 
give resonance impedances that were easy to work with (100 
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even). Now, we use the parallel impedance formula to see 
what happens to total Z: 
 
 

 
We can’t divide any number by zero and arrive at a meaningful 
result, but we can say that the result approaches a value of 
infinity as the two parallel impedances get closer to each other. 
What this means in practical terms is that, the total impedance 
of a tank circuit is infinite (behaving as an open circuit) at 
resonance. We can plot the consequences of this over a wide 
power supply frequency range with a short SPICE simulation: 
(Figure 6.12) 
 
The 1 pico-ohm (1 p) resistor is placed in this SPICE analysis 
to overcome a limitation of SPICE: namely, that it cannot 
analyze a circuit containing a direct inductor-voltage source 
loop. (Figure 6.12) A very low resistance value was chosen so 
as to have minimal effect on circuit behavior. 
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Mutual Inductance 
Dr. David F. Cattell 
faculty.ccp.edu/faculty/dcattell/Sp12/.../Mutual%20Inductance
.doc 
 

 
 

Suppose we hook up an AC generator to a solenoid so that the 
wire in the solenoid carries AC. Call this solenoid the primary 
coil. Next place a second solenoid connected to an AC 
voltmeter near the primary coil so that it is coaxial with the 
primary coil. Call this second solenoid the secondary coil. See 
the figure at the right. 
 
The alternating current in the primary coil produces an 
alternating magnetic field whose lines of flux link the 
secondary coil (like thread passing through the eye of a 
needle). Hence the secondary coil encloses a changing 
magnetic field. By Faraday’s law of induction this changing 
magnetic flux induces an emf in the secondary coil. This effect 
in which changing current in one circuit induces an emf in 
another circuit is called mutual induction. 
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the resulting mutual inductance will be equal to the geometric 
mean of the two individual inductances of the coils. 
 
Also when the inductances of the two coils are the same and 
equal, L 1 is equal to L 2, the mutual inductance that exists 
between the two coils will equal the value of one single coil as 
the square root of two equal values is the same as one single 
value as shown. 
 

 
 
Mutual Inductance Example No1 
 
Two inductors whose self-inductances are given as 75mH and 
55mH respectively, are positioned next to each other on a 
common magnetic core so that 75% of the lines of flux from 
the first coil are cutting the second coil. Calculate the total 
mutual inductance that exists between the two coils. 
 

 
 
Mutual Inductance Example No2 
 
When two coils having inductances of 5H and 4H respectively 
were wound uniformly onto a non-magnetic core, it was found 
that their mutual inductance was 1.5H. Calculate the coupling 
coefficient that exists between. 
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This SPICE simulation plots circuit current over a frequency 
range of 100 to 200 Hz in twenty even steps (100 and 200 Hz 
inclusive). Current magnitude on the graph increases from  
 

 
 
Figure 6.12: Resonant circuit sutitable for SPICE simulation. 
 

 
 
tank circuit frequency sweep 
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v1 1 0 ac 1 sin 
c1 1 0 10u 
* rbogus is necessary to eliminate a 
direct loop 
* between v1 and l1, which SPICE can’t 
handle 
rbogus 1 2 1e-12 
l1 2 0 100m 
.ac lin 20 100 200 
.plot ac i(v1) 
.end 
 
left to right, while frequency increases from top to bottom. The 
current in this circuit takes a sharp dip around the analysis 
point of 157.9 Hz, which is the closest analysis point to our 
predicted resonance frequency of 159.155 Hz. It is at this point 
that total current from the power source falls to zero. 
 
The plot above is produced fromthe above spice circuit file ( 
*.cir), the command (.plot) in the last line producing the text 
plot on any printer or terminal. A better looking plot is 
produced by the “nutmeg” graphical post-processor, part of the 
spice package. The above spice ( *.cir) does not require the 
plot (.plot) command, though it does no harm. The following 
commands produce the plot below: (Figure 6.13) 
 
spice -b -r resonant.raw resonant.cir 
( -b batch mode, -r raw file, input is 
resonant.cir) 
nutmeg resonant.raw 
From the nutmeg prompt: 
>setplot ac1 (setplot {enter} for list of 
plots) 
>display (for list of signals) 
>plot mag(v1#branch) 

173 

 

However, the above equation assumes zero flux leakage and 
100% magnetic coupling between the two coils, L 1 and L 2. 
In reality there will always be some loss due to leakage and 
position, so the magnetic coupling between the two coils can 
never reach or exceed 100%, but can become very close to this 
value in some special inductive coils. 
 
If some of the total magnetic flux links with the two coils, this 
amount of flux linkage can be defined as a fraction of the total 
possible flux linkage between the coils. This fractional value is 
called the coefficient of coupling and is given the letter k. 
 
Coupling Coefficient 
 
Generally, the amount of inductive coupling that exists 
between the two coils is expressed as a fractional number 
between 0 and 1 instead of a percentage (%) value, where 0 
indicates zero or no inductive coupling, and 1 indicating full or 
maximum inductive coupling. 
 
In other words, if k = 1 the two coils are perfectly coupled, if k 
> 0.5 the two coils are said to be tightly coupled and if k < 0.5 
the two coils are said to be loosely coupled. Then the equation 
above which assumes a perfect coupling can be modified to 
take into account this coefficient of coupling, k and is given as: 
 
Coupling Factor Between Coils 
 

 or   
 
When the coefficient of coupling, k is equal to 1, (unity) such 
that all the lines of flux of one coil cuts all of the turns of the 
second coil, that is the two coils are tightly coupled together, 
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Likewise, the flux linking coil one, L1 when a current flows 
around coil two, L2 is exactly the same as the flux linking coil 
two when the same current flows around coil one above, then 
the mutual inductance of coil one with respect of coil two is 
defined as M21. This mutual inductance is true irrespective of 
the size, number of turns, relative position or orientation of the 
two coils. Because of this, we can write the mutual inductance 
between the two coils as: M12 = M21 = M. 
 
Then we can see that self inductance characterises an inductor 
as a single circuit element, while mutual inductance signifies 
some form of magnetic coupling between two inductors or 
coils, depending on their distance and arrangement, an 
hopefully we remember from our tutorials on Electromagnets 
that the self inductance of each individual coil is given as: 
 

 and   
 

By cross-multiplying the two equations above, the mutual 
inductance, M that exists between the two coils can be 
expressed in terms of the self inductance of each coil. 
 

  
 

giving us a final and more common expression for the mutual 
inductance between the two coils of: 
 

 
 

Mutual Inductance Between Coils 
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(magnitude of complex current vector 
v1#branch) 
 
Incidentally, the graph output produced by this SPICE 
computer analysis is more generally known as a Bode plot. 
Such graphs plot amplitude or phase shift on one axis and 
frequency on the other. The steepness of a Bode plot curve 
characterizes a circuit’s “frequency response,” or how 
sensitive it is to changes in frequency. 
 
• REVIEW: 
 
• Resonance occurs when capacitive and inductive reactances 
are equal to each other. 
 
• For a tank circuit with no resistance (R), resonant frequency 
can be calculated with the following formula: 
 

  
 
• The total impedance of a parallel LC circuit approaches 
infinity as the power supply frequency approaches resonance. 
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Figure 6.13: Nutmeg produces plot of current I(v1) for parallel 
resonant circuit. 
 
• A Bode plot is a graph plotting waveform amplitude or phase 
on one axis and frequency on the other. 
 
 
6.3 Simple series resonance 
 
A similar effect happens in series inductive/capacitive circuits. 
(Figure 6.14) When a state of resonance is reached (capacitive 
and inductive reactances equal), the two impedances cancel 
each other out and the total impedance drops to zero! 
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wound one on top of the other over a common soft iron core 
unity coupling is said to exist between them as any losses due 
to the leakage of flux will be extremely small. Then assuming 
a perfect flux linkage between the two coils the mutual 
inductance that exists between them can be given as. 
  

 
Where: 

• µo is the permeability of free space (4.π.10-7) 
• µr is the relative permeability of the soft iron core 
• N is in the number of coil turns 
• A is in the cross-sectional area in m2 
• l is the coils length in meters 

 
Mutual Induction 
  

 
 

Here the current flowing in coil one, L1 sets up a magnetic 
field around itself with some of these magnetic field lines 
passing through coil two, L2 giving us mutual inductance. Coil 
one has a current of I1 and N1 turns while, coil two has N2 
turns. Therefore, the mutual inductance, M12 of coil two that 
exists with respect to coil one depends on their position with 
respect to each other and is given as: 
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coil turns of the second coil inducing a relatively large emf and 
therefore producing a large mutual inductance value. 
 
Likewise, if the two coils are farther apart from each other or 
at different angles, the amount of induced magnetic flux from 
the first coil into the second will be weaker producing a much 
smaller induced emf and therefore a much smaller mutual 
inductance value. So the effect of mutual inductance is very 
much dependant upon the relative positions or spacing, ( S ) of 
the two coils and this is demonstrated below. 
 
Mutual Inductance between Coils 
 

  
 

The mutual inductance that exists between the two coils can be 
greatly increased by positioning them on a common soft iron 
core or by increasing the number of turns of either coil as 
would be found in a transformer. If the two coils are tightly 
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Figure 6.14: Simple series resonant circuit. 
 

 
 
With the total series impedance equal to 0 at the resonant 
frequency of 159.155 Hz, the result is a short circuit across the 
AC power source at resonance. In the circuit drawn above, this 
would not be good. I’ll add a small resistor (Figure 6.15) in 
series along with the capacitor and the inductor to keep the 
maximum circuit current somewhat limited, and perform 
another SPICE analysis over the same range of frequencies: 
(Figure 6.16) 
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Figure 6.15: Series resonant circuit suitable for SPICE. 
 
series lc circuit 
v1 1 0 ac 1 sin 
r1 1 2 1 
c1 2 3 10u 
l1 3 0 100m 
.ac lin 20 100 200 
.plot ac i(v1) 
.end 
 
As before, circuit current amplitude increases from bottom to 
top, while frequency increases from left to right. (Figure 6.16) 
The peak is still seen to be at the plotted frequency point of 
157.9 Hz, the closest analyzed point to our predicted resonance 
point of 159.155 Hz. This would suggest that our resonant 
frequency formula holds as true for simple series LC circuits 
as it does for simple parallel LC circuits, which is the case: 
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Mutual Inductance of Two Coils 
Wayne Storr 
http://www.electronics-tutorials.ws/inductor/mutual-
inductance.html 
 
Mutual Inductance of Two Coils 
 
In the previous tutorial we saw that an inductor generates an 
induced emf within itself as a result of the changing magnetic 
field around its own turns, and when this emf is induced in the 
same circuit in which the current is changing this effect is 
called Self-induction, ( L ). However, when the emf is induced 
into an adjacent coil situated within the same magnetic field, 
the emf is said to be induced magnetically, inductively or by 
Mutual induction, symbol ( M ). Then when two or more coils 
are magnetically linked together by a common magnetic flux 
they are said to have the property of Mutual Inductance. 
 
Mutual Inductance is the basic operating principal of 
transformers, motors, generators and any other electrical 
component that interacts with another magnetic field. Then we 
can define mutual induction as the current flowing in one coil 
induces an emf in an adjacent coil. But mutual inductance can 
also be a bad thing as "stray" or "leakage" inductance from a 
coil can interfere with the operation of another adjacent 
component by means of electromagnetic induction, so some 
form of electrical screening to a ground potential may be 
required. 
 
The amount of mutual inductance that links one coil to another 
depends very much on the relative positioning of the two coils. 
If one coil is positioned next to the other coil so that their 
physical distance apart is small, then nearly nearly all of the 
magnetic flux generated by the first coil will interact with the 
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a frequency point where their two reactive components cancel 
each other out influencing the characteristics of the circuit. 
Both circuits have a resonant frequency point. 
 
The difference this time however, is that a parallel resonance 
circuit is influenced by the currents flowing through each 
parallel branch within the parallel LC tank circuit. A tank 
circuit is a parallel combination of L and C that is used in filter 
networks to either select or reject AC frequencies. Consider 
the parallel RLC circuit below. 
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Figure 6.16: Series resonant circuit plot of current I(v1). 
 

 
 
A word of caution is in order with series LC resonant circuits: 
because of the high currents which may be present in a series 
LC circuit at resonance, it is possible to produce dangerously 
high voltage drops across the capacitor and the inductor, as 
each component possesses significant impedance. We can edit 
the SPICE netlist in the above example to include a plot of 
voltage across the capacitor and inductor to demonstrate what 
happens: (Figure 6.17) 
 
series lc circuit 
v1 1 0 ac 1 sin 
r1 1 2 1 
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c1 2 3 10u 
l1 3 0 100m 
.ac lin 20 100 200 
.plot ac i(v1) v(2,3) v(3) 
.end 
 
According to SPICE, voltage across the capacitor and inductor 
reach a peak somewhere around 70 volts! This is quite 
impressive for a power supply that only generates 1 volt. 
Needless to say, caution is in order when experimenting with 
circuits such as this. This SPICE voltage is lower than the 
expected value due to the small (20) number of steps in the AC 
analysis statement (.ac lin 20 100 200). What is the expected 
value? 
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G + jB  with the duality between the two complex impedances 
being defined as: 
 

Series Circuit Parallel Circuit 
 

Voltage, (V) Current, (I) 
Resistance, (R) Conductance, (G) 
Reactance, (X) Susceptance, (B) 
Impedance, (Z) Admittance, (Y) 

 
As susceptance is the reciprocal of reactance, in an inductive 
circuit, inductive susceptance, BL will be negative in value and 
in a capacitive circuit, capacitive susceptance, BC will be 
positive in value. The exact opposite to XL and XC 
respectively. 
 
We have seen so far that series and parallel RLC circuits 
contain both capacitive reactance and inductive reactance 
within the same circuit. If we vary the frequency across these 
circuits there must become a point where the capacitive 
reactance value equals that of the inductive reactance and 
therefore, XC = XL. The frequency point at which this occurs 
is called resonance and in the next tutorial we will look at 
series resonance and how its presence alters the characteristics 
of the circuit. 
 
Parallel Resonance  
 
The Parallel Resonance Circuit 
 
In many ways a parallel resonance circuit is exactly the same 
as the series resonance circuit we looked at in the previous 
tutorial. Both are 3-element networks that contain two reactive 
components making them a second-order circuit, both are 
influenced by variations in the supply frequency and both have 
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Current and Admittance Triangles 
 

 
 
Parallel RLC Circuit Summary 
 
In a parallel RLC circuit containing a resistor, an inductor and 
a capacitor the circuit current IS is the phasor sum made up of 
three components, IR, IL and IC with the supply voltage 
common to all three. Since the supply voltage is common to all 
three components it is used as the horizontal reference when 
constructing a current triangle. 
Parallel RLC networks can be analysed using vector diagrams 
just the same as with series RLC circuits. However, the 
analysis of parallel RLC circuits is a little more mathematically 
difficult than for series RLC circuits when it contains two or 
more current branches. So an AC parallel circuit can be easily 
analysed using the reciprocal of impedance called Admittance. 
 
Admittance is the reciprocal of impedance given the symbol, 
Y. Like impedance, it is a complex quantity consisting of a real 
part and an imaginary part. The real part is the reciprocal of 
resistance and is called Conductance, symbol Y while the 
imaginary part is the reciprocal of reactance and is called 
Susceptance, symbol B and expressed in complex form as: Y = 
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Figure 6.17: Plot of Vc=V(2,3) 70 V peak, VL=v(3) 70 V 
peak, I=I(V1#branch) 0.532 A peak 
 

 
The expected values for capacitor and inductor voltage are 100 
V. This voltage will stress these components to that level and 
they must be rated accordingly. However, these voltages are 
out of phase and cancel yielding a total voltage across all three 
components of only 1 V, the applied voltage. The ratio of the 
capacitor (or inductor) voltage to the applied voltage is the “Q” 
factor. 
 

 
• REVIEW: 
 
• The total impedance of a series LC circuit approaches zero as 
the power supply frequency approaches resonance. 
 
• The same formula for determining resonant frequency in a 
simple tank circuit applies to simple series circuits as well. 
 
• Extremely high voltages can be formed across the individual 
components of series LC circuits at resonance, due to high 
current flows and substantial individual component 
impedances. 
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6.4 Applications of resonance 
 
So far, the phenomenon of resonance appears to be a useless 
curiosity, or at most a nuisance to be avoided (especially if 
series resonance makes for a short-circuit across our AC 
voltage source!). However, this is not the case. Resonance is a 
very valuable property of reactive AC circuits, employed in a 
variety of applications. One use for resonance is to establish a 
condition of stable frequency in circuits designed to produce 
AC signals. Usually, a parallel (tank) circuit is used for this 
purpose, with the capacitor and inductor directly connected 
together, exchanging energy between each other. Just as a 
pendulum can be used to stabilize the frequency of a clock 
mechanism’s oscillations, so can a tank circuit be used to 
stabilize the electrical frequency of an AC oscillator circuit. As 
was noted before, the frequency set by the tank circuit is solely 
dependent upon the values of L and C, and not on the 
magnitudes of voltage or current present in the oscillations: 
(Figure 6.18) 
 

 
 
Figure 6.18: Resonant circuit serves as stable frequency 
source. 
 
Another use for resonance is in applications where the effects 
of greatly increased or decreased impedance at a particular 
frequency is desired. A resonant circuit can be used to “block” 
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7). Total supply current, ( IS ): 

  
 
8). Conductance, ( G ): 

  
 
9). Inductive Susceptance, ( BL ): 

  
 
10). Capacitive Susceptance, ( BC ): 

  
 
11). Admittance, ( Y ): 

  
 
12). Phase Angle, ( φ ) between the resultant current and the 
supply voltage: 
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1). Inductive Reactance, ( XL ): 

  
 
2). Capacitive Reactance, ( XC ): 

  
 
3). Impedance, ( Z ): 

  
 
4). Current through resistance, R ( IR ): 

  
 
5). Current through inductor, L ( IL ): 

  
 
6). Current through capacitor, C ( IC ): 
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(present high impedance toward) a frequency or range of 
frequencies, thus acting as a sort of frequency “filter” to strain 
certain frequencies out of a mix of others. In fact, these 
particular circuits are called filters, and their design constitutes 
a discipline of study all by itself: (Figure 6.19) 
 

 
 
Figure 6.19: Resonant circuit serves as filter. 
 
In essence, this is how analog radio receiver tuner circuits 
work to filter, or select, one station frequency out of the mix of 
different radio station frequency signals intercepted by the 
antenna. 
 
• REVIEW: 
 
• Resonance can be employed to maintain AC circuit 
oscillations at a constant frequency, just as a pendulum can be 
used to maintain constant oscillation speed in a timekeeping 
mechanism. 
 
• Resonance can be exploited for its impedance properties: 
either dramatically increasing or decreasing impedance for 
certain frequencies. Circuits designed to screen certain 
frequencies out of a mix of different frequencies are called 
filters. 
 
 
6.5 Resonance in series-parallel circuits 
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In simple reactive circuits with little or no resistance, the 
effects of radically altered impedance will manifest at the 
resonance frequency predicted by the equation given earlier. In 
a parallel (tank) LC circuit, this means infinite impedance at 
resonance. In a series LC circuit, it means zero impedance at 
resonance: 
 
However, as soon as significant levels of resistance are 
introduced into most LC circuits, this simple calculation for 
resonance becomes invalid. We’ll take a look at several LC 
circuits with added resistance, using the same values for 
capacitance and inductance as before: 10 μF and 100 mH, 
respectively. According to our simple equation, the resonant 
frequency should be 159.155 Hz. Watch, though, where 
current reaches maximum or minimum in the following SPICE 
analyses: 
 

 
 
Figure 6.20: Parallel LC circuit with resistance in series with 
L. 
 
Here, an extra resistor (Rbogus) (Figure 6.22)is necessary to 
prevent SPICE from encountering trouble in analysis. SPICE 
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Giving us a power factor angle of: 
  

 
 
As the admittance, Y of a parallel RLC circuit is a complex 
quantity, the admittance corresponding to the general form of 
impedance Z = R + jX for series circuits will be written as Y = 
G - jB for parallel circuits where the real part G is the 
conductance and the imaginary part jB is the susceptance. In 
polar form this will be given as: 
  
Example No1 
 
A 50Ω resistor, a 20mH coil and a 5uF capacitor are all 
connected in parallel across a 50V, 100Hz supply. Calculate 
the total current drawn from the supply, the current for each 
branch, the total impedance of the circuit and the phase angle. 
Also construct the current and admittance triangles 
representing the circuit. 
 
Parallel RLC Circuit 
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susceptance, B. This makes it possible to construct an 
admittance triangle that has a horizontal conductance axis, G 
and a vertical susceptance axis, jB as shown. 
 
Admittance Triangle for a Parallel RLC Circuit 
 

 
 
Now that we have an admittance triangle, we can use 
Pythagoras to calculate the magnitudes of all three sides as 
well as the phase angle as shown. 
 
from Pythagoras, 
  

 
 
Then we can define both the admittance of the circuit and the 
impedance with respect to admittance as: 
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can’t handle an inductor connected directly in parallel with any 
voltage source or any other inductor, so the addition of a series 
resistor is necessary to “break 
 
 
resonant circuit 
v1 1 0 ac 1 sin 
c1 1 0 10u 
r1 1 2 100 
l1 2 0 100m 
.ac lin 20 100 200 
.plot ac i(v1) 
.end 
 

 
 
Figure 6.21: Resistance in series with L produces minimum 
current at 136.8 Hz instead of calculated 159.2 Hz 
 
Minimum current at 136.8 Hz instead of 159.2 Hz! 
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Figure 6.22: Parallel LC with resistance in serieis with C. 
 
up” the voltage source/inductor loop that would otherwise be 
formed. This resistor is chosen to be a very low value for 
minimum impact on the circuit’s behavior. 
 
resonant circuit 
v1 1 0 ac 1 sin 
r1 1 2 100 
c1 2 0 10u 
rbogus 1 3 1e-12 
l1 3 0 100m 
.ac lin 20 100 400 
.plot ac i(v1) 
.end 
 
Minimum current at roughly 180 Hz instead of 159.2 Hz! 
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difference between the voltage and the current. The admittance 
of a parallel circuit is the ratio of phasor current to phasor 
voltage with the angle of the admittance being the negative to 
that of impedance. 
   
Conductance ( G ) : 
 
Conductance is the reciprocal of resistance, R and is given the 
symbol G. 

 
Conductance is defined as the ease at which a resistor (or a set 
of resistors) allows current to flow when a voltage, either AC 
or DC is applied. 
   
Susceptance ( B ) : 
 
Susceptance is the reciprocal of reactance, X and is given the 
symbol B. 

 
In AC circuits susceptance is defined as the ease at which a 
reactance (or a set of reactances) allows current to flow when a 
voltage is applied. Susceptance has the opposite sign to 
reactance so capacitive susceptance BC is positive, +ve in 
value and inductive susceptance BL is negative, -ve in value.
   
In AC series circuits the opposition to current flow is 
impedance, Z which has two components, resistance R and 
reactance, X and from these two coponents we can construct 
an impedance triangle. Similarly, in a parallel RLC circuit, 
admittance, Y also has two components, conductance, G and 
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The new unit for admittance is the Siemens, abbreviated as S, ( 
old unit mho's ℧, ohm's in reverse ). Admittances are added 
together in parallel branches, whereas impedances are added 
together in series branches. But if we can have a reciprocal of 
impedance, we can also have a reciprocal of resistance and 
reactance as impedance consists of two components, R and X. 
Then the reciprocal of resistance is called Conductance and the 
reciprocal of reactance is called Susceptance. 
 
Conductance, Admittance and Susceptance 
 
The units used for conductance, admittance and susceptance 
are all the same namely Siemens ( S ), which can also be 
thought of as the reciprocal of Ohms or ohm-1, but the symbol 
used for each element is different and in a pure component this 
is given as: 
 
Admittance ( Y ) : 
 
Admittance is the reciprocal of impedance, Z and is given the 
symbol Y. 

 
In AC circuits admittance is defined as the ease at which a 
circuit composed of resistances and reactances allows current 
to flow when a voltage is applied taking into account the phase 
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Figure 6.23: Resistance in series with C shifts minimum 
current from calculated 159.2 Hz to roughly 180 Hz. 
 
Switching our attention to series LC circuits, (Figure 6.24) we 
experiment with placing significant resistances in parallel with 
either L or C. In the following series circuit examples, a 1 
resistor (R1) is placed in series with the inductor and capacitor 
to limit total current at resonance. The “extra” resistance 
inserted to influence resonant frequency effects is the 100  
 resistor, R2. The results are shown in (Figure 6.25). 
 
And finally, a series LC circuit with the significant resistance 
in parallel with the capacitor. (Figure 6.26) The shifted 
resonance is shown in (Figure 6.27) 
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Figure 6.24: Series LC resonant circuit with resistance in 
parallel with L 
 
resonant circuit 
v1 1 0 ac 1 sin 
r1 1 2 1 
c1 2 3 10u 
l1 3 0 100m 
r2 3 0 100 
.ac lin 20 100 400 
.plot ac i(v1) 
.end 
 
Maximum current at roughly 178.9 Hz instead of 159.2 Hz! 
 

159 

 

 
Impedance of a Parallel RLC Circuit 
 

 
 
You will notice that the final equation for a parallel RLC 
circuit produces complex impedances for each parallel branch 
as each element becomes the reciprocal of impedance, ( 1/Z ) 
with the reciprocal of impedance being called Admittance. In 
parallel AC circuits it is more convenient to use admittance, 
symbol ( Y ) to solve complex branch impedances especially 
when two or more parallel branch impedances are involved 
(helps with the math's). The total admittance of the circuit can 
simply be found by the addition of the parallel admittances. 
Then the total impedance, ZT of the circuit will therefore be 
1/YT Siemens as shown. 
 
Admittance of a Parallel RLC Circuit 
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Since the voltage across the circuit is common to all three 
circuit elements, the current through each branch can be found 
using Kirchoff's Current Law, (KCL). Kirchoff's current law or 
junction law states that "the total current entering a junction or 
node is exactly equal to the current leaving that node", so the 
currents entering and leaving node "A" above are given as: 
 

 
 
Taking the derivative, dividing through the above equation by 
C and rearranging gives us the following Second-order 
equation for the circuit current. It becomes a second-order 
equation because there are two reactive elements in the circuit, 
the inductor and the capacitor. 
  

 
 
The opposition to current flow in this type of AC circuit is 
made up of three components: XL XC and R and the 
combination of these three gives the circuit impedance, Z. We 
know from above that the voltage has the same amplitude and 
phase in all the components of a parallel RLC circuit. Then the 
impedance across each component can also be described 
mathematically according to the current flowing through, and 
the voltage across each element as. 
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Figure 6.25: Series resonant circuit with resistance in parallel 
with L shifts maximum currentfrom 159.2 Hz to roughly 180 
Hz. 
 
resonant circuit 
v1 1 0 ac 1 sin 
r1 1 2 1 
c1 2 3 10u 
r2 2 3 100 
l1 3 0 100m 
.ac lin 20 100 200 
.plot ac i(v1) 
.end 
 
Maximum current at 136.8 Hz instead of 159.2 Hz! 
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Figure 6.26: Series LC resonant circuit with rsistance in 
parallel with C. 
 

 
 
Figure 6.27: Resistance in parallel with C in series resonant 
circuit shifts curreent maximum from calculated 159.2 Hz to 
about 136.8 Hz 
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We can see from the phasor diagram on the right hand side 
above that the current vectors produce a rectangular triangle, 
comprising of hypotenuse IS, horizontal axis IR and vertical 
axis IL - IC   Hopefully you will notice then, that this forms a 
Current Triangle and we can therefore use Pythagoras's 
theorem on this current triangle to mathematically obtain the 
magnitude of the branch currents along the x-axis and y-axis 
and then determine the total current IS of these components as 
shown. 
 
Current Triangle for a Parallel RLC Circuit 
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In the above parallel RLC circuit, we can see that the supply 
voltage, VS is common to all three components whilst the 
supply current IS consists of three parts. The current flowing 
through the resistor, IR, the current flowing through the 
inductor, IL and the current flowing through the capacitor, IC. 
 
But the current flowing through each branch and therefore 
each component will be different to each other and to the 
supply current, IS. The total current drawn from the supply 
will not be the mathematical sum of the three individual 
branch currents but their vector sum. 
 
Like the series RLC circuit, we can solve this circuit using the 
phasor or vector method but this time the vector diagram will 
have the voltage as its reference with the three current vectors 
plotted with respect to the voltage. The phasor diagram for a 
parallel RLC circuit is produced by combining together the 
three individual phasors for each component and adding the 
currents vectorially. 
 
Since the voltage across the circuit is common to all three 
circuit elements we can use this as the reference vector with 
the three current vectors drawn relative to this at their 
corresponding angles. The resulting vector IS is obtained by 
adding together two of the vectors, IL and IC and then adding 
this sum to the remaining vector IR. The resulting angle 
obtained between V and IS will be the circuits phase angle as 
shown below. 
 
Phasor Diagram for a Parallel RLC Circuit 
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The tendency for added resistance to skew the point at which 
impedance reaches a maximum or minimum in an LC circuit is 
called antiresonance. The astute observer will notice a pattern 
between the four SPICE examples given above, in terms of 
how resistance affects the resonant peak of a circuit: 
 
• Parallel (“tank”) LC circuit: 
 
• R in series with L: resonant frequency shifted down 
 
• R in series with C: resonant frequency shifted up 
 
• Series LC circuit: 
 
• R in parallel with L: resonant frequency shifted up 
 
• R in parallel with C: resonant frequency shifted down 
 
Again, this illustrates the complementary nature of capacitors 
and inductors: how resistance in series with one creates an 
antiresonance effect equivalent to resistance in parallel with 
the other. If you look even closer to the four SPICE examples 
given, you’ll see that the frequencies are shifted by the same 
amount, and that the shape of the complementary graphs are 
mirror-images of each other! 
 
Antiresonance is an effect that resonant circuit designers must 
be aware of. The equations for determining antiresonance 
“shift” are complex, and will not be covered in this brief 
lesson. It should suffice the beginning student of electronics to 
understand that the effect exists, and what its general 
tendencies are. 
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Added resistance in an LC circuit is no academic matter. While 
it is possible to manufacture capacitors with negligible 
unwanted resistances, inductors are typically plagued with 
substantial amounts of resistance due to the long lengths of 
wire used in their construction. What is more, the resistance of 
wire tends to increase as frequency goes up, due to a strange 
phenomenon known as the skin effect where AC current tends 
to be excluded from travel through the very center of a wire, 
thereby reducing the wire’s effective cross-sectional area. 
Thus, inductors not only have resistance, but changing, 
frequency-dependent resistance at that. 
 
As if the resistance of an inductor’s wire weren’t enough to 
cause problems, we also have to contend with the “core losses” 
of iron-core inductors, which manifest themselves as added 
resistance in the circuit. Since iron is a conductor of electricity 
as well as a conductor of magnetic flux, changing flux 
produced by alternating current through the coil will tend to 
induce electric currents in the core itself (eddy currents). This 
effect can be thought of as though the iron core of the 
transformer were a sort of secondary transformer coil 
powering a resistive load: the less-than-perfect conductivity of 
the iron metal. This effects can be minimized with laminated 
cores, good core design and high-grade materials, but never 
completely eliminated. 
 
One notable exception to the rule of circuit resistance causing 
a resonant frequency shift is the case of series resistor-
inductor-capacitor (“RLC”) circuits. So long as all components 
are connected in series with each other, the resonant frequency 
of the circuit will be unaffected by the resistance. (Figure 6.28) 
The resulting plot is shown in (Figure 6.29). 
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The Parallel RLC Circuit  
© 2016 by AspenCore 
http://www.electronics-tutorials.ws/accircuits/parallel-
circuit.html 
 
The Parallel Circuit 
 
The Parallel RLC Circuit is the exact opposite to the series 
circuit we looked at in the previous tutorial although some of 
the previous concepts and equations still apply. However, the 
analysis of parallel RLC circuits can be a little more 
mathematically difficult than for series RLC circuits so in this 
tutorial about parallel RLC circuits only pure components are 
assumed in this tutorial to keep things simple. 
 
This time instead of the current being common to the circuit 
components, the applied voltage is now common to all so we 
need to find the individual branch currents through each 
element. The total impedance, Z of a parallel RLC circuit is 
calculated using the current of the circuit similar to that for a 
DC parallel circuit, the difference this time is that admittance 
is used instead of impedance. Consider the parallel RLC circuit 
below. 
 
Parallel RLC Circuit  
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Figure 6.28: Series LC with resistance in series.  
 
series rlc circuit 
v1 1 0 ac 1 sin 
r1 1 2 100 
c1 2 3 10u 
l1 3 0 100m 
.ac lin 20 100 200 
.plot ac i(v1) 
.end 
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Figure 6.29: Resistance in series resonant circuit leaves current 
maximum at calculated 159.2 Hz, broadening the curve. 
 
Maximum current at 159.2 Hz once again! 
 
Note that the peak of the current graph (Figure 6.29) has not 
changed from the earlier series LC circuit (the one with the 1 
token resistance in it), even though the resistance is now 100 
times greater. The only thing that has changed is the 
“sharpness” of the curve. Obviously, this circuit does not 
resonate as strongly as one with less series resistance (it is said 
to be “less selective”), but at least it has the same natural 
frequency! 
 
It is noteworthy that antiresonance has the effect of dampening 
the oscillations of freerunning LC circuits such as tank circuits. 
In the beginning of this chapter we saw how a capacitor and 
inductor connected directly together would act something like 
a pendulum, exchanging voltage and current peaks just like a 
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When the complex impedances of the branches of the parallel 
RLC circuit are combined, the equivalent impedance is of the 
form:  

 
When this expression is rationalized and put in the standard 
form: 
 

 
 
then the impedance in ohms and the phase can be determined. 
By setting the = 0, the resonant frequency can be calculated. 
The expressions for these calculations are quite lengthy.  
 
 
RLC Parallel Expressions 
 
The complex impedances of the parallel RLC circuit takes the 
form: 

 
 
When rationalized, and the components have the form:  
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pendulum exchanges kinetic and potential energy. In a perfect 
tank circuit (no resistance), this oscillation would continue 
forever, just as a frictionless pendulum would continue to 
swing at its resonant frequency forever. But frictionless 
machines are difficult to find in the real world, and so are 
lossless tank circuits. Energy lost through resistance (or 
inductor core losses or radiated electromagnetic waves or . . .) 
in a tank circuit will cause the oscillations to decay in 
amplitude until they are no more. If enough energy losses are 
present in a tank circuit, it will fail to resonate at all. 
 
Antiresonance’s dampening effect is more than just a curiosity: 
it can be used quite effectively to eliminate unwanted 
oscillations in circuits containing stray inductances and/or 
capacitances, as almost all circuits do. Take note of the 
following L/R time delay circuit: (Figure 6.30) 
 

 
 
Figure 6.30: L/R time delay circuit 
 
The idea of this circuit is simple: to “charge” the inductor 
when the switch is closed. The rate of inductor charging will 
be set by the ratio L/R, which is the time constant of the circuit 
in seconds. However, if you were to build such a circuit, you 
might find unexpected oscillations (AC) of voltage across the 
inductor when the switch is closed. (Figure 6.31)Why is this? 
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There’s no capacitor in the circuit, so how can we have 
resonant oscillation with just an inductor, resistor, and battery? 
 
All inductors contain a certain amount of stray capacitance due 
to turn-to-turn and turn-to-core insulation gaps. Also, the 
placement of circuit conductors may create stray capacitance. 
While clean circuit layout is important in eliminating much of 
this stray capacitance, there will always be some that you 
cannot eliminate. If this causes resonant problems (unwanted 
AC oscillations), added resistance may be a way to combat it. 
If resistor R is large enough, it will cause a condition of 
antiresonance, dissipating enough energy to prohibit the 
inductance and stray capacitance from sustaining oscillations 
for very long. 
 
Interestingly enough, the principle of employing resistance to 
eliminate unwanted resonance is one frequently used in the 
design of mechanical systems, where any moving object with 
mass is a potential resonator. A very common application of 
this is the use of shock absorbers in automobiles. Without 
shock absorbers, cars would bounce wildly at their resonant 
frequency after hitting any bump in the road. The shock 
absorber’s job is to introduce a strong antiresonant effect by 
dissipating energy hydraulically (in the same way that a 
resistor dissipates energy electrically). 
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RLC Parallel Circuit 
HyperPhysics***** Electricity and Magnetism  
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/rlcpar.html 
 
RLC Parallel Circuit 

 
Finding the impedance of a 
parallel RLC circuit is 
considerably more difficult than 
finding the series RLC 
impedance. This is because 
each branch has a phase angle 
and they cannot be combined in 
a simple way. The impedance 

of the parallel branches combine in the same way that parallel 
resistors combine: 
 

 
 
But although the branch impedance magnitudes can be 
calculated from: 
 

 
they cannot be directly combined as suggested by the 
expression above because they are different in phase - like 
vectors in different directions cannot be added directly. This 
dilemma is most easily solved by the complex impedance 
method.  
 
RLC Parallel: Complex Impedance Method 
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, 
where Irms and Vrms are rms current and voltage, respectively. 
The reactances vary with frequency , with XL large at high 
frequencies and XC large at low frequencies given as: 

. 
At some intermediate frequency , the reactances will be 
equal and cancel, giving Z=R —this is a minimum value for 
impedance, and a maximum value for Irms results. We can get 
an expression for by taking XL=XC. Substituting the definitions 
of XL and XC yields: 

. 
 is the resonant frequency of an RLC series circuit. This is 

also the natural frequency at which the circuit would oscillate 
if not driven by the voltage source. At , the effects of the 
inductor and capacitor cancel, so that Z=R, and Irms is a 
maximum. Resonance in AC circuits is analogous to 
mechanical resonance, where resonance is defined as a forced 
oscillation (in this case, forced by the voltage source) at the 
natural frequency of the system. 
The receiver in a radio is an RLC circuit that oscillates best at 
its . A variable capacitor is often used to adjust the resonance 
frequency to receive a desired frequency and to reject others. is 
a graph of current as a function of frequency, illustrating a 

resonant peak in Irms at . The two curves are for two 
different circuits, which differ only in the amount of resistance 
in them. The peak is lower and broader for the higher-
resistance circuit. Thus higher-resistance circuits do not 
resonate as strongly, nor would they be as selective in, for 
example, a radio receiver. 
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Figure 6.31: Inductor ringing due to resonance with stray 
capacitance. 
 
• REVIEW: 
 
• Added resistance to an LC circuit can cause a condition 
known as antiresonance, where the peak impedance effects 
happen at frequencies other than that which gives equal 
capacitive and inductive reactances. 
 
• Resistance inherent in real-world inductors can contribute 
greatly to conditions of antiresonance. One source of such 
resistance is the skin effect, caused by the exclusion of AC 
current from the center of conductors. Another source is that of 
core losses in iron-core inductors. 
 
• In a simple series LC circuit containing resistance (an “RLC” 
circuit), resistance does not produce antiresonance. Resonance 
still occurs when capacitive and inductive reactances are equal. 
 
6.6 Q and bandwidth of a resonant circuit 
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The Q, quality factor, of a resonant circuit is a measure of the 
“goodness” or quality of a resonant circuit. A higher value for 
this figure of merit correspondes to a more narrow bandwith, 
which is desirable in many applications. More formally, Q is 
the ration of power stored to power dissipated in the circuit 
reactance and resistance, respectively: 
 

 
 
This formula is applicable to series resonant circuits, and also 
parallel resonant circuits if the resistance is in series with the 
inductor. This is the case in practical applications, as we are 
mostly concerned with the resistance of the inductor limiting 
the Q. Note: Some text may show X and R interchanged in the 
“Q” formula for a parallel resonant circuit.  This is correct for 
a large value of R in parallel with C and L. Our formula is 
correct for a small R in series with L 
 
A practical application of “Q” is that voltage across L or C in a 
series resonant circuit is Q times total applied voltage. In a 
parallel resonant circuit, current through L or C is Q times the 
total applied current. 
 
6.6.1 Series resonant circuits 
 
A series resonant circuit looks like a resistance at the resonant 
frequency. (Figure 6.32) Since the definition of resonance is 
XL=XC, the reactive components cancel, leaving only the 
resistance to contribute to the impedance. The impedance is 
also at a minimum at resonance. (Figure 6.33) Below the 
resonant frequency, the series resonant circuit looks capacitive 
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Resonance in RLC Circuits 
 
https://www.boundless.com/physics/textbooks/boundless-
physics-textbook/induction-ac-circuits-and-electrical-
technologies-22/ac-circuits-162/resonance-in-rlc-circuits-586-
3035/ 
 
Resonance is the tendency of a system to oscillate with greater 
amplitude at some frequencies—in an RLC series circuit, it 

occurs at . 
\ 
Resonance is the tendency of a system to oscillate with greater 
amplitude at some frequencies than at others. Frequencies at 
which the response amplitude is a relative maximum are 
known as the system's resonance frequencies. To study the 
resonance in an RLC circuit, as illustrated below, we can see 
how the circuit behaves as a function of the frequency of the 
driving voltage source. 

 
 
Combining Ohm's law, Irms=Vrms/Z, and the expression for 
impedance Z from 
 

 gives 
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The receiving circuit of a radio is an important application of a 
resonant circuit. One tunes the radio to a particular station 
(which transmits a specific electromagnetic wave or signal) by 
varying a capacitor, which changes the resonant frequency of 
the receiving circuit. When the resonance frequency of the 
circuit matches that of the incoming electromagnetic wave, the 
current in the receiving circuit increases. This signal caused by 
the incoming wave is then amplified and fed to a speaker. 
Because many signals are often present over a range of 
frequencies, it is important to design a high-Q circuit to 
eliminate unwanted signals. In this manner, stations whose 
frequencies are near but not equal to the resonance frequency 
give signals at the receiver that are negligibly small relative to 
the signal that matches the resonance frequency. 
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since the impedance of the capacitor increases to a value 
greater than the decreasing inducitve reactance, leaving a net 
capacitive value. Above resonance, the inductive rectance 
increases, capacitive reactance decreases, leaving a net 
inductive component. 
 

 
 
Figure 6.32: At resonance the series resonant circuit appears 
purely resistive. Below resonance it looks capacitive. Above 
resonance it appears inductive. 
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Figure 6.33: Impedance is at a minumum at resonance in a 
series resonant circuit. 
 
Current is maximum at resonance, impedance at a minumum. 
Current is set by the value of the resistance. Above or below 
resonance, impedance increases. 
 
The resonant current peak may be changed by varying the 
series resistor, which changes the Q. (Figure 6.34) This also 
affects the broadness of the curve. A low resistance, high Q 
circuit has a narrow bandwidth, as compared to a high 
resistance, low Q circuit. Bandwidth in terms of Q and 
resonant frequency: 
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Because XL = ωL, XC = 1 /ωC and ω02 = 1/LC, we can 
express the term (XL - XC)2 as  

 
   (33.34) 
Using this result in Equation 33.34 gives  

 (33.35) 
This expression shows that at resonance, when ω = ω0, the 
average power is a maximum and has the value (ΔVrms)2/R. 
Figure 33.15b is a plot of average power versus frequency for 
two values of R in a series RLC circuit. As the resistance is 
made smaller, the curve becomes sharper in the vicinity of the 
resonance frequency. This curve sharpness is usually described 
by a dimensionless parameter known as the quality factor, 
denoted by Q:  

 
where Δω is the width of the curve measured between the two 
values of ω for Pav which has half its maximum value, called 
the half-power points (see Fig. 33.15b.) It is left as a problem 
(Problem 70) to show that the width at the half-power points 
has the value Δω = R/L, so  

 
The curves plotted in Figure 33.16 show that a high-Q circuit 
responds to only a very narrow range of frequencies, whereas a 
low-Q circuit can detect a much broader range of frequencies. 
Typical values of Q in electronic circuits range from 10 to 100.  
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curves correspond to three values of R. Note that in each case 
the current reaches its maximum value at the resonance 
frequency ω0 . Furthermore, the curves become narrower and 
taller as the resistance decreases. By inspecting Equation 
33.32, we must conclude that, when R = 0, the current 
becomes infinite at resonance. Although the equation predicts 
this, real circuits always have some resistance, which limits the 
value of the current.  
 

 
Figure 33.15 (a) The rms current versus frequency for a series 
RLC circuit, for three values of R. The current reaches its 
maximum value at the resonance frequency ω0 . (b) Average 
power versus frequency for the series RLC circuit, for two 
values of R. 
 
It is also interesting to calculate the average power as a 
function of frequency for a series RLC circuit. Using 
Equations 33.30, 33.31, and 33.23, we find that  
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Figure 6.34: A high Q resonant circuit has a narrow bandwidth 
as compared to a low Q 
 

 
Bandwidth is measured between the 0.707 current amplitude 
points. The 0.707 current points correspond to the half power 
points since P = I2R, (0.707)2 = (0.5). (Figure 6.35) 
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�Figure 6.35: Bandwidth, f ismeasured between the 70.7% 
amplitude points of series resonant circuit. 

 
 
In Figure 6.35, the 100% current point is 50 mA. The 70.7% 
level is 0707(50 mA)=35.4 mA. The upper and lower band 
edges read from the curve are 291 Hz for fl and 355 Hz for fh. 
The bandwidth is 64 Hz, and the half power points are ± 32 Hz 
of the center resonant frequency: 
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Resonance in a series RLC circuit 
© 2011-2016 Kshitij Education India 
 
http://www.kshitij-iitjee.com/Resonance-in-a-series-RLC-
circuit 
 
A series RLC circuit is said to be in resonance when the 
current has its maximum value. In general, the rms current can 
be written  

  (33.31) 
where Z is the impedance.  Substituting the expression for Z 
from Equation 33.23 into 33.31 gives  

  (33.32) 
Because the impedance depends on the frequency of the 
source, the current in the RLC circuit also depends on the 
frequency. The frequency ω0 at which XL – XC = 0 is called 
the resonance frequency of the circuit. To find ω0 , we use the 
condition XL = XC , from which we obtain ω0L = 1/ω0C, or 

   (33.33) 
Note that this frequency also corresponds to the natural 
frequency of oscillation of an LC circuit. Therefore, the current 
in a series RLC circuit reaches its maximum value when the 
frequency of the applied voltage matches the natural oscillator 
frequency—which depends only on L and C. Furthermore, at 
this frequency the current is in phase with the applied voltage. 
 
A plot of rms current versus frequency for a series RLC circuit 
is shown in Figure 33.15a. The data assume a constant ΔVrms 
= 5.0 mV, that L = 5.0 μH, and that C = 2.0 nF. The three 
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Since BW = fc/Q: 

 
 
6.6.2 Parallel resonant circuits 
 
A parallel resonant circuit is resistive at the resonant 
frequency. (Figure 6.36) At resonance XL=XC, the reactive 
components cancel. The impedance is maximum at resonance. 
(Fig6.6. ure 6.37) Below the resonant frequency, the parallel 
resonant circuit looks inductive since the impedance of the 
inductor is lower, drawing the larger proportion of current. 
Above resonance, the capacitive rectance decreases, drawing 
the larger current, thus, taking on a capacitive characteristic. 
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Figure 6.36: A parallel resonant circuit is resistive at 
resonance, inductive below resonance, capacitive above 
resonance. 
 
Impedance is maximum at resonance in a parallel resonant 
circuit, but decreases above or below resonance. Voltage is at a 
peak at resonance since voltage is proportional to impedance 
(E=IZ). (Figure 6.37) 
 
A low Q due to a high resistance in series with the inductor 
produces a low peak on a broad response curve for a parallel 
resonant circuit. (Figure 6.38) conversely, a high Q is due to a 
low resistance in series with the inductor. This produces a 
higher peak in the narrower response curve. The high Q is 
achieved by winding the inductor with larger diameter (smaller 
gague), lower resistance wire. 
 
The bandwidth of the parallel resonant response curve is 
measured between the half power points. This corresponds to 
the 70.7% voltage points since power is proportional to E2. 
((0.707)2=0.50) Since voltage is proportional to impedance, 
we may use the impedance curve. (Figure 6.39)  
 
In Figure 6.39, the 100% impedance point is 500  
. The 70.7% level is 0707(500)=354  
. The upper and lower band edges read from the curve are 281 
Hz for fl and 343 Hz for fh. The bandwidth is 62 Hz, and the 
half power points are ± 31 Hz of the center resonant frequency: 
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The difference of the A-B cursors is 63.44Hz, which is in very 
good agreement with the theoretical 63.8Hz result even taking 
the inaccuracy of the graphic procedure into consideration. 
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Finally let's examine the bandwidth of this circuit. 
 
The calculated value: 

 
 
Lets confirm it graphically using the diagram. 
 
Zmax = 625 ohm. The impedance limits that define the cutoff 
frequencies are: 
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Figure 6.37: Parallel resonant circuit: Impedance peaks at 
resonance. 
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Figure 6.38: Parallel resonant response varies with Q. 
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The equivalent parallel resistance: Req = Qo2 RL = 625 ohm 
 
The equivalent parallel circuit: 
 

 
 
The impedance diagram: 

 
Finally, if we use copy and paste to see both curves on one 
diagram, we get the following picture where the two curves 
coincide. 
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The resonant (Thomson) frequency: 

 
The impedance diagram is the following: 
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�Figure 6.39: Bandwidth, f is measured between the 70.7% 
impedance points of a parallel resonant circuit. 
 
6.7 Contributors 
 
Contributors to this chapter are listed in chronological order of 
their contributions, from most recent to first. See Appendix 2 
(Contributor List) for dates and contact information. Jason 
Starck (June 2000): HTML document formatting, which led to 
a much better looking second edition. 
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The equivalent impedance: 

 
Let's examine this impedance at the resonant frequency where 
1-w02LC=0 
 
We will also assume that the quality factor Qo = woL/ RL>>1. 

 
At the resonant frequency 
 
Since at resonant frequencyw0L= 1/w0C 
 
Zeq=Qo2 RL 
 
Since in the pure parallel resonant circuit at the resonant 
frequency Zeq = R, the real parallel resonant circuit can be 
replaced by a pure parallel resonant circuit, where: 
 
R = Qo2 RL 
 
Example 3 
 
Compare the impedance diagrams of a real parallel and its 
equivalent pure parallel resonance circuit. 
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The "pure" parallel circuit above was very easy to examine 
since all components were in parallel. This is especially 
important when the circuit is connected to other parts. 
 
However in this circuit, the series loss resistance of the coil 
was not considered. 
 
Now let's examine the following so called "real parallel 
resonant circuit," with the series loss resistance of the coil 
present and learn how we can transform it into a "pure" 
parallel circuit. 
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RESONANT CIRCUITS  
Copyright © 2012 DesignSoft, Inc. 
http://www.tina.com/English/tina/course/28resonant/resonant.h
tm 
 
 
Circuits containing R, L, C elements often have special 
characteristics useful in many applications. Because their 
frequency characteristics (impedance, voltage, or current vs. 
frequency) may have a sharp maximum or minimum at certain 
frequencies these circuits are very important in the operation of 
television receivers, radio receivers, and transmitters. In this 
chapter we will present the different types, models and 
formulas of typical resonant circuits. 
 
SERIES RESONANCE 
 
A typical series resonant circuit is shown in the figure below. 

 
The total impedance: 

 
 
In many cases, R represents the loss resistance of the inductor, 
which in the case of air core coils simply means the resistance 
of the winding. The resistances associated with the capacitor 
are often negligible. 
 
The impedances of the capacitor and inductor are imaginary 
and have opposite sign. At the frequency w0 L= 1/w0C, the 
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total imaginary part is zero and therefore the total impedance is 
R, having a minimum at the w0frequency. This frequency is 
called the series resonant frequency. 
 
The typical impedance characteristic of the circuit is shown in 
the figure below. 

 
From the w0L= 1/w0Cequation, the angular frequency of the 
series resonance: or for the frequency in Hz: 
 

f0 =  
 
This is the so-called Thomson formula. 
 
If R is small compared to the XL, XC reactance around the 
resonant frequency, the impedance changes sharply at the 
series resonant frequencyIn this case we say that the circuit has 
good selectivity. 
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Find the resonant frequency and the resonant quality factor of 
a pure parallel resonance circuit where R = 5 kohm, L = 0.2 H, 
C = 200 nF. 
 

 
 
 
The resonant frequency: 

 
 

 
and the resonant quality factor: 

 
Incidentally, this quality factor is equal to IL /IR at the 
resonant frequency. 
 
Now let us draw the impedance diagram of the circuit: 
 
The simplest way is to replace the current source by an 
impedance meter and run an AC Transfer analysis. 
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The selectivity can be measured by the quality factor Q If the 
angular frequency in the formula equals the angular frequency 
of resonance, we get the resonant quality factor There is a  
more general definition of the quality factor: 

 
 
The voltage across the inductor or capacitor can be much 
higher then the voltage of the total circuit. At the resonant 
frequency the total impedance of the circuit is: 
 
Z=R 
 
Assuming that the current through the circuit is I, total voltage 
on the circuit is 
 
Vtot=I*R 
 
However the voltage on the inductor and the capacitor 

 
Therefore 

 
 
This means at the resonant frequency the voltages on the 
inductor and the capacitor are Q0 times greater than the total 
voltage of the resonant circuit. 
 
The typical run of the VL, VC voltages is shown in the figure 
below. 
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Let's demonstrate this via a concrete example. 
 
Example 1 
 
Find the frequency of resonance (f0) and the resonant quality 
factor (Q0) in the series circuit below, if C=200nF, L=0.2H, 
R=200 ohms, and R=5 ohms. Draw the phasor diagram and the 
frequency response of the voltages. 
 

135 

 

voltage and admittance changes sharply around the resonant 
frequency. In this case we say the circuit has good selectivity. 
 
Selectivity can be measured by the quality factor Q 

 
When the angular frequency equals the angular frequency of 
resonance, we get the resonant quality factor 

 
 
There is also a more general definition of the quality factor: 

 
Another important property of the parallel resonant circuit is 
its bandwidth. The bandwidth is the difference between the 
two cutoff frequencies, where the impedance drops from its 

maximum value to  the maximum. 
 
It can be shown that the Δf bandwidth is determined by the 
following simple formula: 

 
This formula is also applicable for series resonant circuits. 
 
Let us demonstrate the theory through some examples. 
 
Example 2 
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linear impedance axis is shown below. Note that viewed with 
this axis, the impedance appears to be changing even more 
rapidly near resonance. 

 
 
The susceptances of the inductance and capacitance are equal 
but of opposite sign at resonance:       BL = BC,      1/w0L = 
w0C, hence the angular frequency of the parallel resonance: 

 
determined again by the Thomson formula. 
 
Solving for the resonant frequency in Hz:               

 
At this frequency the admittance Y = 1/R = G and is at its 
minimum (i.e., the impedance is maximum). The currents 
through the inductance and capacitance can be much higher 
then the current of the total circuit. If R is relatively large, the 
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For R=200 ohms 
 
This is a quite low value for practical resonant circuits, which 
normally have quality factors over 100. We have used a low 
value to more easily demonstrate the operation on a phasor 
diagram. 
 
The current at the resonance frequency I=Vs/R=5m> 
 
The voltages at current of 5mA: VR = Vs =1 V 
 
meanwhile:                VL = VC = I*w0L = 5*10-3 *5000*0.2 
= 5V 
The ratio between VL, VC,and Vs is equal to the quality 
factor! 
 
Now let's see the phasor diagram by calling it from the AC 
Analysis menu of TINA. 
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We used the Auto Label tool of the diagram window to 
annotate the picture. 

 
 
The phasor diagram nicely shows how the voltages of the 
capacitor and inductor cancel each other at the resonance 
frequency. 
 
Now let's see VLand VCversus frequency. 
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see below the loss resistance of the inductor can be 
transformed into this resistor. 
 
The total admittance: 

 
 
The admittances (called susceptances) of the capacitor and 
inductor are imaginary and have opposite sign. At the 
frequency w0C= 1/w0Lthe total imaginary part is zero, so the 
total admittance is 1/R-its minimum value and the total 
impedance has its maximum value. This frequency is called 
the parallel resonant frequency. 
 
The total impedance characteristic of the pure parallel resonant 
circuit is shown in the figure below: 

 
 
Note that the impedance changes very rapidly around the 
resonance frequency, even though we used a logarithmic 
impedance axis for better resolution. The same curve with a 
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PARALLEL RESONANCE 
 
The pure parallel resonant circuit is shown in the figure below. 

 
If we neglect the loss resistance of the inductor, R represents 
the leakage resistance of the capacitor. However, as we will 
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Note that VL starts from zero voltage (because its reactance is 
zero at zero frequency) while VC starts from 1 V (because its 
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reactance is infinite at zero frequency). Similarly VL tends to 
1V and VCto 0V at high frequencies. 
 
Now for R=5 ohms the quality factor is much greater: 
 
This is a relatively high quality factor, close to the practical 
achievable values. 
 
The current at the resonance frequency I=Vs/R=0.2A 
 
meanwhile:                VL = VC = I*w0L = 0.2*5000*0.2 = 200 
 
Again the ratio between the voltages equals the quality factor! 
 
Now let's draw just VL and VC voltages versus frequency. On 
the phasor diagram, VR would be too small compared to 
VLand VC 
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As we can see, the curve is very sharp and we needed to plot 
10,000 points to get the maximum value accurately. Using a 
narrower bandwidth on the linear scale on the frequency axis, 
we get the more detailed curve below. 
 

 
 
Finally let's see the impedance characteristic of the circuit: for 
different quality factors. 
 
The figure below was created using TINA by replacing the 
voltage generator by an impedance meter. Also, set up a 
parameter stepping list for R = 5, 200, and 1000 ohms. To set 
up parameter stepping, select Control Object from the Analysis 
menu, move the cursor (which has changed into a resistor 
symbol) to the resistor on the schematic, and click with the left 
mouse button. To set a logarithmic scale on the Impedance 
axis, we have double-clicked on the vertical axis and set Scale 
to Logarithmic and the limits to 1 and 10k. 
 


