M.S. THESIS UNIVERSITY OF MONTANA

PETROLOGY AND ORIGIN OF PRECAMBRIAN METAMORPHIC ROCKS IN THE EASTERN RUBY MOUNTAINS SOUTHWESTERN MONTANA

KEVIN J. SMITH

PETROLOGY AND ORIGIN OF PRECAMBRIAN METAMORPHIC ROCKS IN THE EASTERN RUBY MOUNTAINS, SOUTHNESTERN MONTANA

by

Kevin Smith

B.S., Western Washington State College, 1977

Presented in partial fulfillment of the requirements for the degree of

Master of Science

UNIVERSITY OF MONTANA

1980

Approved by: 5 Chairman, Board of Examiners

Dean, Graduate

5-6-80 Date

Copyright © 1980 by Kevin J Smith

All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review or scholarly journal.

First Printing:1980Second Printing:2021

ISBN 978-1-716-44328-2

Kevin J Smith Houston, TX

kj-smith@sbcglobal.net

ABSTRACT

Precambrian schists and gneisses are exposed in much of the Ruby Mountains of southwestern Montana. The major rock types include abundant quartz-feldspar gneiss, hornblende gneiss, amphibolite. quartzitic gneiss, and marble. Minor rock types important in the study area include anthophyllite gneiss, hornblende-pyroxene-plagioclase gneiss, quartz-hypersthene-garnet granulite, iron-formation, and hornblende-hypersthene granulite. These rocks form a concordant series folded into a broad, open antiform-synform pair in the study area.

The marble, quartzitic gneiss and iron-formation in the area clearly originated as sedimentary units. The hornblende gneiss assemblage was also found to be dominantly sedimentary in origin. Evidence for this includes its association with marble and quartzitic gneiss, the latter intimately mixed within it, the presence of meta-conglomerates, and the abundance of quartz making the composition distinctly different from normal igneous rocks. A petrographic estimate of composition for one amphibolite showed it to most resemble a dolomitic shale. It is possible that some amphibolites in the area are metamorphosed dikes and sills. The uniform granitic composition and lack of structures in the quartz-feldspar gneiss suggest an igneous origin for this unit.

Metamorphism in the area exceeded the sillimanite-orthoclase zone of the amphibolite facies as indicated by the presence of sillimanite, perthite, and calcic plagioclase An42. The presence of the assemblage quartz-hypersthene-garnet, and textures indicating the reaction anthophyllite \leftrightarrow enstatite + quartz show that conditions ran locally into the orthopyroxene zone of the granulite facies. These probably represent areas locally undersaturated in water.

The area went through two phases of regional deformation. The first event, roughly contemporaneous with the highest metamorphic grades, produced similar-style, tight isoclinal folds and the regional foliation. Subsequent to that, the area was folded into a large, concentric, open antiform-synform pair trending northeasterly and plunging at moderate to steep angles. Small super-imposed folds of undetermined age relationship to the second event also exist.

Addendum 2021: This volume you hold in your hand is a revised edition containing the complete original text plus the addition of a number of appendices. These include all maps, data tables, field notes and petrographic descriptions. I have included a new structural analysis treating the area as a single domain with all 342 strike and dip measurements, and a cartoon structure cross-section with a suggested pre-metamorphic sedimentary section.

ACKNOWLEDGMENTS

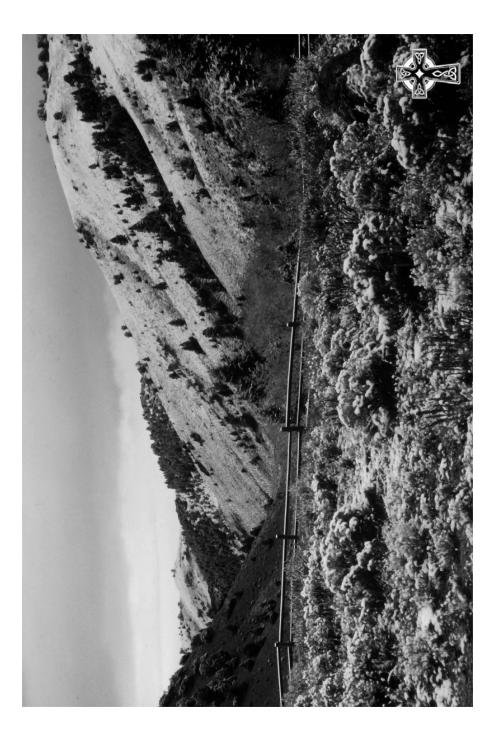
I greatly appreciate the assistance and encouragement given by Doctors David Alt, Don Hyndman, Gray Thompson and Tom Margrave. I would like to thank the various ranchers upon whose property I conducted my field work, especially for the generous hospitality given me by Mr. and Mrs. Jack Kephart, and Mr. and Mrs. Coy Brown. Lastly, thanks to the many graduate students for the hours of discussion over many aspects of this paper.

> "And some rin up hill and down dale, knapping the chucky stanes to pieces with hammers, like sae many road makers run daft. They say it is to see how the world was made."

-- Sir Walter Scott, St.Ronan's Well, 1824

TABLE OF CONTENTS

ABSTRACT	
ACKNOWKEDGMENTS	
LIST OF TABLES	
LIST OF FIGURES	
CHAPTER	
I. INTRODUCTION	1
Location	1
Physiography	1
Previous Studies	2
II. METAMORPHIC ROCKS	4
General Statement	4
Field Description and Petrography	5
Marble	5
Tremolite Rock	7
Quartz-Feldspar Gneiss	7
Hornblende Gneiss Assemblage	13
Hornblende Gneiss and Amphibolite	13
Garnet-enstatite-quartz-anthophyllite gneiss	19
Hornblende-pyroxene-plagioclase granulite	20
Quartz-hypersthene-garnet granulite	22
Hornblende-hypersthene granulite	24
Quartzitic gneiss	24
Pegmatite	25
III. METAMORPHISM	26
Regional Metamorphism	26
Retrograde Metamorphism	31
IV. STRUCTURE	32
Folding	32
F1 structures	
F2 structures	
Summary of Folding	48
Faulting	48
V. CONCLUSION	49
REFERENCES	53
Appendix 1: Geological Map	59
Appendix 2: Field station location maps	61
Appendix 3: Field station descriptions	66
Appendix 4: Samples by Station number	129
Appendix 5: Sample Collection Location map	130
Appendix 6: General mineral formulae	131
Appendix 7: Petrographic Sample Analyses	132
Appendix 8: Strike and Dip data by station	200
Appendix 9: Single domain Structural Analysis (3/2021)	208
Appendix 10: Field Work Maps	209


LIST OF TABLES

1	Modal Analyses of Quartz-Feldspar Gneiss and Biotite-Quartz-Feldspar Gneiss						
1.							
2.	Modal Analyses of Hornblende Gneiss and Amphibolite	15					
3.	Major Oxide Estimate of Amphibolite and Chemical Analyses of other Tholeiites, Andesites, and Shales	18					
4.	Modal Analyses of Minor Lithologies	19					
5.	Interpreted Geochronology of Events	51					

LIST OF FIGURES

		page
01.	Schematic Index Map of Pre-Cherry Creek, Dillon Gneiss, and Cherry Creek Group Rocks in the Ruby Range	2
02.	Folded and Broken Lenses of Quartz within Marble	6
03.	Thin Section of Calc-Silicate Marble	6
04.	Thin Section of Tremolite Rock	7
05.	Q-A-P Variation Diagram Showing Quartz-Feldspar Gneiss	8
06.	Thin Section of Quartz-Feldspar Gneiss	10
07.	Thin Section of Quartz-Feldspar Gneiss	10
08.	Thin Section of Quartz-Feldspar Gneiss	11
09.	Thin Section of Garnet-Biotite-Quartz-Feldspar Gneiss	12
10.	Thin Section of Sillimante Gneiss	12
11.	Metaconglomerate within Hornblende Gneiss	13
12.	Isoclinal Folding in Hornblende Gneiss	14
13.	Thin Section of Amphibolite	15
14.	Disequilibrium Textures Between Garnet and Biotite Symplektite on Garnet	16
15.	Symplektite on garnet in the presence of Biotite	17
16.	Thin Section of Biotite-Hornblende Gneiss	17
17.	Thin Section of Anthophyllite Gneiss	20
18.	Thin Section of Hornblende-Pyroxene-Plagioclase Granulite	21
19.	Relict Hornblende within Hypersthene	21
20.	Thin Section of Quartz-Hypersthene-Garnet Granulite	23
21.	Quartzitic Gneiss in Reflected Light	25
22.	A-C-Fm-K Diagrams of Equilibrium Assemblages	27
23.	P-T Conditions of Metamorphism	30
24.	Stereo-net Diagram of Regional Structures	33
25.	Index Map of Domain Subdivisions of Study Area	34
26.	A-M Stereo-net Diagrams of F2 Trends for Each Domain	35

CHAPTER I

INTRODUCTION

Pre-beltian rocks underlie much of the Ruby Range of southwestern Montana. They include hornblende gneisses, amphibolites, mica schists, quartzites, marbles and quartz-feldspar gneisses. Marbles and quartzites clearly represent metasediments. Bielak (1978) has shown that hornblende gneisses and amphibolites in the region are separable into distinct metasedimentary and metaigneous units respectively. The Dillon Gneiss unit has so far resisted the clear designation as metaigneous or metasedimentary. Although it was originally mapped as a "granite gneiss" by Heinrich (1953), recent investigations have called that interpretation into question. Garihan (1973 and 1974), and Garihan and Williams (1976) have postulated a mudstone or shale rich in illite and quartz as a possible sedimentary parent. In each case though, lack of hard evidence prevents any final conclusion. The resolution of this problem is important before a reasonable pre-metamorphic history can be postulated.

The purpose of this study was to map a portion of the contact between the Dillon Gneiss and overlying metasedimentary units. By determining through field relationships and petrographic analysis the original nature of the Dillon Gneiss, I could go on to suggest a premetamorphic depositional environment that resulted in the present rock assemblage. Another purpose of this study was to determine the metamorphic and deformational history of the area. The study area was chosen for its lack of retrograde effects and interesting structure. Well developed retrograde effects would tend to mask prograde mineralogy and equilibrium textures essential to determining the highest temperature and pressure conditions reached.

Location

The Ruby Range lies east of Dillon along the Beaverhead-Madison County line in southwestern Montana (Fig. 1). The Hinch Creek map area covers about 18 square kilometers on the eastern edge of the range. The Ruby River and the range front bound the area on the east. Vertical faults bringing the basement against Paleozoic sedimentary rocks bound the area on the west. The area includes portions of the Alder, Laurin Canyon, Metzel Ranch, and Ruby Dam 7 1/2-minute quadrangles.

Physiography

The area has been uplifted to elevations approaching 2135 meters by differential movement on range-bounding vertical faults. Activity on the faults dates from the Eocene or Oligocene until the present time (Garihan, 1973). Gently rolling upland surfaces cut by deep drainages characterize the area. Sage and grass cover most of the surface but groups of juniper and pine are scattered about, especially on north facing slopes. Greasewood chokes the upper portions of many gullies. Major drainages include Hinch Creek, Dry Hollow, and Beatch Canyon. They all flow northeastward normal to the range front. Hinch Creek has an elevation of 1615 meters at its exit from the range giving a total relief in the area of 520 meters.

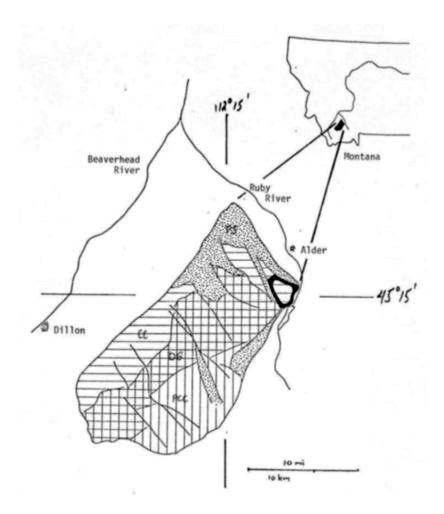


Figure 1. Schematic index map of the Ruby Mountains showing the Pre-Cherry Creek (PCC), Dillon Gneiss (DG), Cherry Creek (CC) units and overlaying Paleozoic sediments (PS) with the Northwest-trending faults. The heavy outline indicates the study area.

Previous Studies

Earliest descriptions of the region were made by Hayden (1872) who noted excellent exposures of banded gneiss, hornblende gneiss, and veins of feldspar and quartz. Peale (1896) described the rocks along Cherry Creek in the Gravelly Mountains. Equivalents of the Cherry Creek Group form much of the basement along the northwest flank of the Ruby Range.

Winchell studied the Crystal Graphite deposits near Dillon in 1911. In 1914 he published a general survey of the important mining districts of the Dillon one degree quadrangle. Klepper (1951) described the southern Ruby Range in a general

reconnaissance of southwestern Montana The first detailed studies of the Ruby Mountains were made by Heinrich (1948, 1949a, 1949b, 1950, 1960, and 1963).

Recent studies in the range include the following: Tysdal (1970) mapped the Paleozoic section in the northern Ruby Range; Okuma (1971) studied the petrology and structural geology in relation to talc deposits in the southern Ruby Range; Garihan (1973, 1974, 1976a, and 1976b) studied the structure, petrology, and talc deposits of the central Ruby Range; Dahl (1978) determined metamorphic conditions using electron microprobe geothermometry and geobarometry; Desmarais (1978) studied the origin of the ultramafic bodies; Bielak (1978) examined the origin of amphibolites. Wooden (1973), Giletti (1966), and James and Hedge (1980) have obtained radiometric dates of rocks from the Ruby Range.

Included in the area of this study is some mapping done by James and Hier (1960) of the Kelly iron deposit, and Berg (1976) of the portion between Hinch Creek and the Ruby Reservoir. All previous mapping in the present area was reviewed in the field for this study.

CHAPTER II

METAHORPHIC ROCKS

General Statement

The Ruby Range is a block of basement rock uplifted since Eocene or Oligocene time. The range core contains crystalline schists and gneisses unconformably overlain at the northern end by Paleozoic sediments (Fig. 1). The crystalline complex consists of broad belts of different rock types that parallel the northeast trend of the range. From northwest to southeast they are grouped into three units: 1) the "Cherry Creek" Group, 2) the "Dillon Granite Gneiss", and 3) the "Pre-Cherry Creek" rocks (Heinrich, 1960). The regional foliation strikes northeast parallel to the units and dips northwest placing the Cherry Creek Group highest structurally. The uppermost part of the Cherry Creek is not exposed in the Ruby Range (Garihan, 1973).

Cherry Creek.

The Cherry Creek group occupies the northwest side of the range and contains several different rock types. Peale first described it near Ennis, Montana in 1896. It crops out regionally in the Gravelly, Madison, Tobacco Root, Greenhorn, and Ruby Ranges. The presence of marble distinguishes it from other similar units. The various rock types of the Cherry Creek Group include:

- 1) marble
- 2) calc-silicate schist
- 3) quartzite
- 4) hornblende gneiss and amphibolite
- 5) quartzofeldspathic gneiss
- 6) sillimanite schist
- 7) biotite schist and gneiss
- 8) chlorite schist
- 9) iron formation

Dillon Gneiss.

The Dillon Gneiss commonly contains elongate stringers of quartz, perthitic microcline, and plagioclase imparting a conspicuous banding to the rock. It forms a sheet-like mass of quartz-feldspar and biotite-quartz-feldspar gneiss separating the Cherry Creek from the Pre-Cherry Creek units. Heinrich (1960) originally named it the "Dillon Granite Gneiss". Garihan and Williams (1976) have proposed renaming it the "Dillon Gneiss" because the igneous nature of the unit is not firmly established.

Pre-Cherry Creek.

The Pre-Cherry Creek rocks crop out along the southeast side of the range. Heinrich (1960) used the name to distinguish these from the marble bearing Cherry Creek unit to the north-west. The various rocks are mostly gneissic, coarse grained. migmatitic and discontinuous along strike. The main rock types include:

- 1) quartz-feldspar gneiss
- 2) biotite-garnet-quartz-feldspar gneiss
- 3) biotite-garnet gneiss
- 4) hornblende-quartz-feldspar gneiss
- 5) hornblende gneiss and amphibolite

Field Description and Petrography:

The field work for this study took place during parts of the summers of 1978, and 1979. Petrographic study of thin-sections was made from representative samples. Rock slabs and chips were etched in hydrofluoric acid and stained with sodium cobaltanitrite as an aid in distinguishing and estimating feldspar percentages. Marbles were stained with Alizarine Red S to distinguish calcite from dolomite (Friedman, 1959). Anorthite content was determined with the bisectrix method in combination with extinction angles on cleavage fragments immersed in oils.

Marble.

Marbles in the Hinch Creek area form resistant marker beds. They form rounded outcrops easily recognized by their characteristic tan to grey-weathered surface commonly covered by orange lichen.

Mappable units range from 4 to over 500 meters thick. The width of beds varies along strike. Unrecognized folding or plastic flowage causes much of the thickness variations and makes it impossible to measure true thickness. In the southeast corner of section 32, beds of marble as thin as 0.5 meters interbed with hornblende gneiss and quartz-feldspar gneiss.

The layering in much of the marble ranges from 5 centimeters to over a meter in thickness. Differential weathering along the parting surfaces defines most of the layering, especially in pure marbles. In quartz bearing varieties, beds and stringers of quartz up to 20 meters thick also define the layering. Bedding everywhere parallels the foliation. Compositional differences, the presence of concordant quartzite beds, and interlayering with quartz-feldspar gneiss and hornblende gneiss on a small scale indicate that the compositional layering represents original sedimentary bedding. In some massive marbles the quartz lenses and beds 2-20 millimeters thick are isoclinally folded and broken (Fig. 2). The marble flowed plastically during deformation while the more competent quartz beds folded and broke. Bedding in the marble generally persists along strike, but on the noses of some folds it stretches and pinches out into lenses best observed in the Hinch Creek valley about 2 kilometers from the range front.

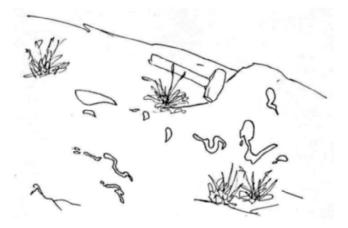


Figure 2. (Sta 299, p103) Folded and broken lenses of quartz within fine-grained structureless marble. The head of the hammer is approximately 10 cm long.

Coarse grained dolomitic marble predominates in the area with grain sizes ranging from 0.1 to 5 millimeters. Compositions include pure dolomite marble and quartzbearing calcite marble containing up to 15% quartz. Quartz grains show strain shadows and some subgrain development. Some contain rounded inclusions of calcite and/or microcline. Accessory minerals include muscovite, microcline, and hematite. Calc-silicate marbles contain calcite, dolomite, diopside, serpentine, phlogopite, graphite, and garnet (Fig. 3).

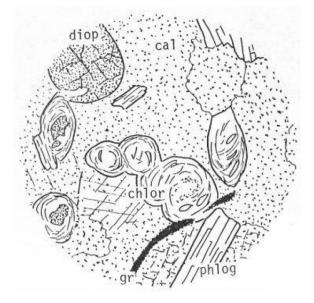


Figure 3. 1MT22 (p173). Calc-silicate marble showing diopside, relict grossular garnet altering to chlorite, phlogopite mica, graphite and dolomite.

The unit apparently originated as beds of limestone with local thin beds of quartz. In several locations undeformed layers of quartz were found within it but for the most part deformation and recrystallization destroyed the primary sedimentary structures leaving the grey massive marble as it now exists.

Tremolite rock.

The rock is a mass of ragged tremolite crystals 3 to 5 mm long (Fig. 4). Crystals up to 15 mm exist in places. Tremolite has difficulty in nucleating and commonly forms as coarse-grained, unoriented crystals. Calc-silicates normally lack preferred orientations and may differentiate into monomineralic masses at high grades of regional metamorphism (Spry, 1969).

In outcrop the rock forms a low, massive, and very resistant bed or lens. It is discontinuous along strike and weathers tan to brown, brown on a fresh surface. It is most likely genetically related to the adjacent marble unit.



Figure 4. 1MT21B (p172). Randomly oriented grains of tremolite.

Quartz-feldspar gneiss.

Quartz-feldspar gneiss occurs most commonly as a conspicuously foliated or banded rock with a distinctive orange-pink color on the weathered surface. Bands of elongate quartz and feldspar define the foliation. Where present, biotite is disseminated or, more commonly, concentrated in bands a few millimeters to many centimeters thick. Biotite parallels the foliation and helps define it. Biotite-quartzfeldspar gneiss is less common and on the average more calcic than "normal" quartz-feldspar gneiss. The gneiss in the center of the antiform (see map), contains a few beds of hornblende gneiss concordant to the foliation. In general, it has uniform composition and color except near the hornblende gneiss contact. The two units become interlayered at the contacts. The southeastern body of gneiss varies in color from gray to orange-pink and contains abundant biotite in some exposures and none in others. It contains numerous, scattered, and concordant beds of hornblende gneiss and amphibolite from 0.5 to 10 meters thick which cannot be followed along strike due to poor exposure.

Severely deformed migmatites crop out locally and augen gneiss is fairly common throughout. Augen range from 0.5 to 5 centimeters. Porphyroblasts of garnet from 0.2 to 2 centimeters form a spotted appearance in many outcrops. Garnets are disseminated or form concentrations in either the quartzofeldspathic or more commonly in the biotite-rich layers.

Structurally these gneisses form the lowermost unit in the area. They occupy the center of the antiform and the edge of the synform. The foliation everywhere parallels the contacts with marble or hornblende gneiss. The gneiss makes sharp contacts with the marble, but it grades into, and interbeds with the hornblende gneiss. Gradation consists of increasing amounts of mafic minerals, especially hornblende and biotite with conspicuous light and dark layers. Hornblende, where present, generally appears in quantities of 10% or more and is used as the basis for distinguishing hornblende gneiss from quartz-feldspar gneiss.

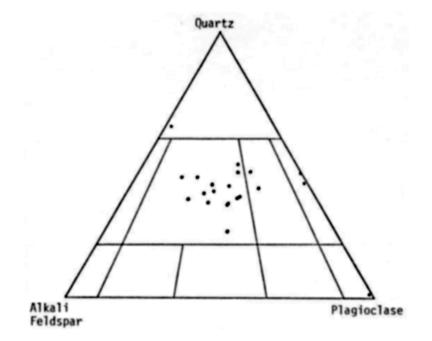


Figure 5. Modal compositions of quartz-feldspar gneiss plotted on an I.U.G.S. quartz, alkali feldspar, plagioclase variation diagram (from Streckeisen, 1973).

Compositions of the unit concentrate near the center of a quartz-plagioclase-alkali feldspar variation diagram (Fig. 5). They show some variation in composition across the diagram, ranging from quartz-plagioclase to quartz-plagioclase-microcline gneisses. Assuming isochemical metamorphism, this indicates a fairly homogenous unit with the average bulk composition of granite.

					-							
Sample #	07	11	12	18b	16	27c	13a	02	14	18a	05a	32
Quartz	45	45	50	45	45	39	37	35	35	35	25	25
Microcline	40	35	5	16	20	35	30	30	35	28	35	10 -
Plagioclase	15	19	45	31	29	24	20	34	27	35	22	34
Sericite	tr	tr		4	2	1	6	1			17	25
Garnet	tr		tr	4	3		7	1	3	tr	1	
Biotite		tr		tr	tr	1			tr	2	tr	3
Muscovite			tr		tr	tr	tr					1
Hematite	tr	1		tr	tr	tr		tr	tr			
Magnetite							tr					
Apatite							tr		tr	tr		tr
Chlorite				tr	tr				tr			2
Hornblende							tr					
Rutile					tr	tr						
Sillimanite												
Zircon				tr	tr		tr	tr	tr			

Table 1. Modal analyses of quartz-feldspar gneiss Volume % visually estimated from thin section

Tablel. Continued Modal analyses of biotite-quartz-feldspar gneiss

		nodal analyses of proceed quarter relaspar giverss									
Sample #	17	01	77	28a	27b	27j	27g	03	04	05c	
Quartz	40	40	35	36	36	40	36	30	35	1	
Microcline	24	30	25	23	14	15	19	1		tr	
Plagioclase	30	14	35	25	33	24	1	39	36	67	
Sericite		11		10	4	1			4	8	
Garnet	1	tr			tr	7	24	10	5	1	
Biotite	5	5	5	6	13	13	17	20	20	20	
Muscovite				1			tr		tr		
Hematite							tr	tr		tr	
Magnetite									tr		
Apatite	tr	tr	tr		tr					tr	
Chlorite				tr			tr		tr	3	
Rutile			tr								
Sillimanite							3				
Zircon	tr	tr		tr		tr	tr	tr	tr	tr	

Quartz ranges from one fourth to one half of the rock (Table 1). Except for augen, it usually forms the largest grains but sizes are seriate from 5 millimeters down to very fine. Crystals normally are elongate and strained. They have irregular and amoeboid shapes with lobes growing into and enveloping adjacent minerals. In some cases this leaves relict inclusions within the quartz (Figs. 6 & 7).

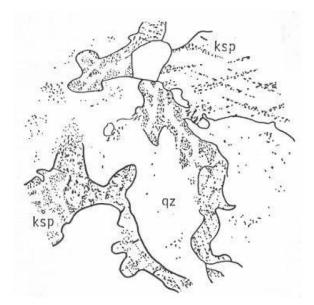


Figure 6. 1MT13A (p152). Large ameboidal grains of quartz embaying smaller grains of microcline.

Figure 7. 1MT13F (p158). Ameboidal quartz grains embaying microcline and hornblende.

Potassium feldspar normally forms about one third of the rock with microcline the dominant variety. Shapes vary from minor elongate to equigranular grains, some with 120° triple junctions. Some specimens show strong development of ribbon and

patchy microperthite. The albite in many cases has exolved to the edge of the grain (Fig. 8). Microcline augen grow to as large as 3 centimeters. Plagioclase, An27-33, ranges from minor amounts up to two thirds of the rock. Minor to almost complete sericite alteration exists in the mineral, but is normally less than 10%. Many plagioclase grains have a zoned edge adjacent to microcline which the sericite nowhere invades. Twinning is present but not abundant.

Figure 8. 1MT13D (p155). Quartz-feldspar gneiss. Large perthite grains with albite exolved to the edges.

Biotite grains characteristically define the foliation, but-in some cases show no preferred orientation. Pink almandine garnet ranges up to one fifth of the rock, occurring as anhedral to euhedral, fractured poikioblasts (Fig. 9). It forms compositional layers usually associating with biotite layers.

Accessory sillimanite occurs in one thin-section (279), as euhedral end-sections associated with the garnet-biotite layer (Fig. 10). In hand specimen sillimanite occurs as parallel blades up to 5 millimeters long associated with biotite and radiating blades growing on the foliation surface which apparently shows that they grew during or after formation of the foliation. Other accessory minerals include rounded zircon, apatite, hematite, chlorite altering from biotite, magnetite, and rutile.

The origin of the quartz-feldspar gneiss presents a special problem. Throughout most of the Ruby Range, no firm evidence has been found to indicate an igneous or sedimentary parent. The contacts between the gneiss and adjacent rocks, especially marble, lack cross-cutting relationships. Garihan and Williams (1976) suggested a

sedimentary parent of a mudstone or a shale rich in illite and quartz to explain the granitic composition.

Figure 9. 1MT01 (p132). Texture in garnet-biotite-quartz feldspar gneiss showing suboriented grains of biotite and broken grains of garnet.

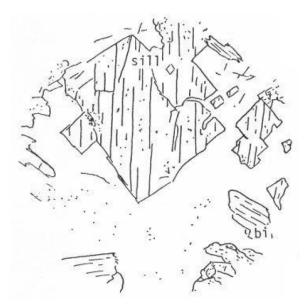


Figure 10. 1MT27G (p178). High magnification view of sillimanite end-sections forming a lineation in the sample.

The quartz-feldspar gneiss/marble contact in the study area also shows no crosscutting relationships. The two become interbedded in the south-central part of the area. This could result from either interbedding of original sediments or rhyolite volcanics, intrusion of granite sills into the marble, or isoclinal folding. Synkinimatic intrusion in the catazone takes place with minor disturbance of the wall rock (Buddington, 1959).

The granitic composition of the unit argues in favor of a plutonic origin. The Dillon Gneiss is an extensive unit in the Ruby Range. It would take a very thick pile of sediments to form the gneiss. It is structureless and compositionally uniform. No compositional layering was found, no lenses or beds of conglomerate could be located. Metaconglomerates were found in some hornblende gneiss units showing their ability to survive the metamorphism (Fig. 11). No primary sedimentary structures have been found in the gneiss even after many regional and detailed studies in the Ruby Range. Because of this, I feel that a plutonic origin is the most permissible conclusion.

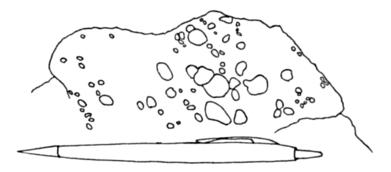


Figure 11. (Sta 497, p125) Metaconglomerate within hornblende gneiss. Exposure is too poor to determine the original attitude and position of sedimentary layer. Pebbles are quartz.

Hornblende-gneiss assemblage.

Structurally, the hornblende-gneiss unit sits just above the marble and grades "upsection" into quartzitic gneiss and biotite-quartz-feldspar gneiss. In the northwest corner of the map area the unit becomes very thick and contains the Kelly Iron Formation mapped in detail by James and Wier (1960). Quartzitic gneiss beds occur both in the hornblende gneiss and marble units.

The assemblage forms abrupt contacts with the marble but grade concordantly into the quartz-feldspar gneiss. Near the "contact" the volume of microcline in the rock is much greater than in the rest of the assemblage. The presence of hornblende defines the unit although there exist several minor related rock types within it. Because of their variety and distinctiveness, they are described separately in this section.

Hornblende gneiss and amphibolite.

This dominant rock type of the assemblage normally crops out as a medium grained banded gneiss. Massive "salt and pepper" amphibolite beds are made up almost entirely of hornblende and plagioclase. These crop out within the lower part of the assemblage and locally within the quartz-feldspar gneiss unit. Grain sizes range from 0.1 to 5 millimeters with 1 or 2 millimeters most common. Layers consist of dark hornblende-rich and light quartzofeldspathic lithologies from a few millimeters to over a meter thick. Garnets in some cases concentrate in mafic layers. The unit forms poor outcrops that are best exposed in gullies or ridges. The layers are compositionally distinct parallel to the foliation. In places they are isoclinally folded with an amplitude ranging from 2 to 50 meters (Fig. 12). This is best observed on the north side of Hinch Creek in section 32. Foliation passes through the noses of the folds. Folding within the unit makes the original thicknesses of beds impossible to determine. Metaconglomerates are noted in several locations within hornblende gneiss units (Fig. 11).

Figure 12. (Sta 505, p127) Isoclinal folding in interlayered hornblende and quartzfeldspar gneiss. The folding is not apparent on the vertical portion of the outcrop (the top of the figure). The brim of the hat is approximately 35cm wide.

Hornblende content ranges from minor amounts to nearly one half of the gneiss and 60% in amphibolite (Table 2 and Fig. 13). Anhedral to euhedral crystals define the foliation and in some cases a lineation The crystals commonly contain inclusions of biotite or rounded quartz. Crystals show brown to dark green pleochroism except in amphibolite sample 34 where it is blue-green to green near garnet. This suggests decreased availability of ferrous iron near the iron-rich garnet. In hornblende this

lightens the pleochroism from dark olive-green and brown to light shades of blue~green and green (Troger, 1979). Hornblende also appears to be altering to diopside in some rocks as evidenced by diopside crystals with hornblende cores.

Product Strength	volume a visually estimated in thin-section										
Sample #	13d	13b	13f	9	30a	13e	19a	30c	31	06*	34
Hornblende	10	10	17	71	20	20	18	30	40	62.0	60
Quartz	30	34	40	14	30	30	35	27	20	9.7	
Microcline	25	25	13			30		5			
Plagioclase	35	30	30	35	35	20	29	20	38	25.7	25
Sericite	tr	tr	tr	3	tr		1	tr	tr	tr	10
Biotite	tr	tr	tr		7	tr	2	10	tr		tr
Garnet		1		12	8		10	8	2	0.9	3
Diopside				18			5		tr		1
Apatite	tr	tr	tr	tr	tr		tr	tr	tr	tr	tr
Zircon	tr	tr	tr				tr	tr			
Rutile	tr		tr								
Magnetite			tr	1			tr		tr	1.5	tr
Hematite					tr			tr			
Epidote											1
*Thin-section count	of 534	points	5								

Table 2. Modal analyses of hornblende gneiss and amphibolite Volume % visually estimated in thin-section

Figure 13. 1MT06 (p143). Texture in amphibolite section 06 showing hornblende plus plagioclase.

Plagioclase is more calcic in the gneiss at An42. The anhedral to subhedral grains show minor sericitization, but sericite may replace up to one third of the plagioclase. Near microcline, the plagioclase rims are zoned and the sericite does not invade these rims. In one amphibolite, recrystallized plagioclase grains have common 120° grain junctions.

Quartz is an important, although variable constituent in the gneiss, but minor in the amphibolite. Grains have strain shadows, with elongate to equigranular shapes. The grains become larger on the average and more ameboidal with increasing quartzofeldspathic content of the rock. Garnet is minor but generally present in the rock. Porphyroblasts often contain inclusions of quartz, plagioclase, and in some cases hornblende. Garnets are commonly fractured and broken. The fragments spread out along the foliation and long dimensions lie parallel to it. Foliation wraps around the porphyroblasts in some samples. As in the quartz-feldspar gneiss, garnets sometimes show disequilibrium textures with biotite (Fig. 14). Symplektite on garnet was noted in sample 19a (Fig. 15). In some samples equilibrium textures exist between the two.

Figure 14. 1MT04 (p137). Disequilibrium textures between garnet and biotite. They are separated by a plagioclase rim.

Biotite ranges up to 10% but rarely amounts to more than one percent. It generally grows parallel to foliation, but may show no preferred orientation (Fig. 16). In some rocks it shows disequilibrium textures such as those with garnet described above. It may also have a ragged, splintery appearance and wormy intergrowths of quartz or plagioclase.

Perthitic microcline is normally absent in the rock, but may become important near contacts with quartz-feldspar gneiss. Diopside is important in some samples as described above under hornblende. Other accessory minerals include apatite, rounded zircon, minor rutile, magnetite, hematite, and in one sample, secondary epidote.

Figure 15. 1MT19A (p168). Symplektite on garnet in the presence of biotite. Garnet plus hornblende show equilibrium textures elsewhere in the section.

Figure 16. 1MT13E (p157). Randomly oriented biotite grains in hornblende gneiss. Note the perthite grain which is present in samples taken near the contacts with quartz-feldspar gneiss.

The hornblende gneiss beds vary greatly in mineralogy and texture, and generally contain abundant quartz (Table 2). The beds are compositionally layered and grade into other units. Because of the textural and mineralogical variations and concordant beds grading into other units, I conclude that they are derived from a calcareous shale. A shaley limestone derivative would contain less quartz. The large amount of quartz eliminates the possibility of metamorphosed basalts because the composition departs too radically from a natural basalt.

Amphibolites in the study area are more basic in composition than the hornblende gneiss, but they are not necessarily metamorphosed basic volcanics. A petrographic estimate of the composition of sample 06 shows it to resemble most closely a dolomitic shale (Table 3). Bielak (1978) found that amphibolites in the Winnipeg Creek area could be separated into both meta-sedimentary and meta-basalt units. This is most likely the case in the Hinch Creek area as well. Many amphibolite units have massive, uniform textures whereas the hornblende gneiss is generally streaky, quartz bearing, and in places conglomeratic. The entire assemblage consisted of minor basic volcanics interbedded with calcareous shales. Volcanics could have formed at the same time as deposition or intruded later as sills. The assemblage was then subjected to upper amphibolite-facies metamorphism.

		Table		3	
	1	2	3	4	5
SiO2	55.9	55.43	55.4	58.17	50.7
Ti02	0.2	0.46	0.5	0.80	2.0
A1203	12.7	13.84	13.8	17.26	14.4
Fe ₂ 0 ₃	2.0	4.00	4.0	3.07	3.2
Fe0	5.0	1.74	1.7	4.18	9.8
MnO	0.2	tr			0.2
Mg0	9.9	2.67	7.7	3.24	6.2
CaO	10.1	5.96	11.0	6.93	9.4
Na ₂ 0	2.3	1.80	1.8	3.21	2.6
K20	0.3	2.67	2.7	1.61	1.0
H ₂ 0	1.0	5.56	1.2		
P205	0.1	0.2	0.2	0.21	
Other		6.15			
1. Oxide	approximati	on of modal a	mphibolite (this study)	
2. Avera	ge shale (Cl	arke, 1924, p	age 552)		
dolom	ge shale fro nite, results malization t	after remova	ted with one 1 of volatil	e part in six le constituent	pure s and
4. Avera	ge andesite	(Hyndman, 197	2, page 166)		

5. Average continental tholeiite (Hyndman, 1972, page 171)

Table 4 provides modal analyses for the minor lithologies encountered in the study area, discussed next.

Table 4. Modal analyses of minor lithologies Volume % visually estimated in thin section

Sample #*	21b,	3xa	15b	08	30f	38	37a	42	10	05b	33	28b	36
Duartz		25		5	29	35	15			70	94	20	20
Microcline							40			1		79	75
Plagioclase			46	45					44	24	5	1	5
Garnet		10	5	2	34	42					tr		
Biotite		tr		5			tr				tr	tr	
Anthophyllite		55											
Hornblende			28	7				50	58				
Tremolite	100												
Diopside			13	25									
Hypersthene			8	11	37	17		50	35				
Enstatite		10							_				
Graphite		-					15						
Spinel								7		-			
Sericite			tr				10						
Fe Oxides	tr		tr	1	tr	6	5	tr	tr	tr			
Apatite			tr										
Rutile		tr									tr		
Serpentine								tr					
luscovite										5	tr		tr
30f & 38. qu 37a. graphit 42 & 10. hor 05b & 33. qu	enst rnbl artz e gn	atit ende -hyp eiss nde- itic	-pyr erst hype	oxen hene rsth	-ant e-pl -gar	agio net	clas gran	e an ulit	eiss				

Garnet-enstatite-quartz-anthophyllite gneiss.

This bed crops out as a dark purplish-brown rock with foliation defined by oriented anthophyllite grains. Hornblende gneiss concordantly surrounds the bed. It is very hard and resistant to weathering and therefore caps the ridge where it crops out. This rock type was found only once in the study area.

Parallel anthophyllite grains dominate the mineralogy. Growing in the anthophyllite are skeletal enstatite crystals with quartz inclusions (Fig. 17). This texture suggests the reaction:

Anthophyllite \leftrightarrow 7 Enstatite + Quartz + H2O (Winkler, 1974)

Anthophyllite reacts at nearly 800°C over most pressures under condition; of PH2O equals Pload. Because the prograde reaction yields water, it would be favored where PH2O is less than Pload and would react at lower temperatures.

Sieve textured garnets are an important part of the rock. Inclusions in them weakly to strongly parallel the foliation with no evidence of rotation. The porphyroblasts are irregular in outline and elongate parallel to the foliation. Cordierite is absent. Rabbit (1948, p. 314) lists an anthophyllite gneiss from the "Ruby Dam area" which also has no cordierite. I believe it is from the same outcrop as I know of no other in the vicinity. Accessory minerals include biotite and rutile.

Figure 17. 1MT3XA (p136). Skeletal enstatite growing on anthophyllite from the anthophyllite gneiss sample 3xa.

Hornblende-pyroxene-plagioclase granulite.

This rock type crops out in two places about one kilometer apart. Sample 15b was collected from a bed about a meter thick within the quartz-feldspar gneiss. Plagioclase-rich layers about 1 millimeter thick define a crude foliation concordant with that of the enclosing gneiss. Sample 08 was collected near the contact between the quartz-feldspar and hornblende gneisses with which it is also concordant. Both samples have average grain sizes in the range of 0.1 and 2 millimeters.

Essentially unaltered plagioclase dominates the rock type. It occurs both as a mosaic of recrystallized grains commonly intersecting at 120° angles and as a wormy intergrowth in garnet (Fig. 18). Quartz is minor to absent in the rock, small amounts occurring as mosaic grains intersecting each other and plagioclase grains at 120° angles. Diopside forms up to a quarter of the rock and also occurs as a mosaic of recrystallized grains intersecting at 120° angles.

The other minerals in this rock show common disequilibrium textures. Hornblende and hypersthene make up small to moderate amounts of the rock. In one grain of sample 15b a hypersthene grain has a diopside core. This could result from the replacement of diopside by hypersthene or by the simultaneous growth of both. The lack of other disequilibrium textures between the two suggests the second case. Hornblende has gradational contacts with hypersthene, and hypersthene grains with hornblende cores exist (Fig. 19). These gradational contacts suggest disequilibrium. They are not in contact in sample 08 because of the small amounts of each. Biotite and garnet are minor constituents in this rock type and display mutual disequilibrium textures. Biotite grains embay the garnets and a plagioclase rim always separates the two. Accessory minerals include magnetite and apatites.

Figure 18. 1MT15B (p162). Wormy intergrowths of plagioclase into garnet in hornblende-pyroxene-plagioclase granulite.

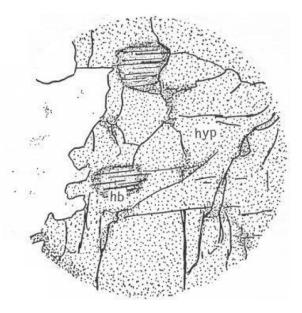


Figure 19. 1MT15B (p162). Relict grains of hornblende within a large grain of hypersthene. The gradational contact suggests replacement of hornblende by hypersthene.

The disequilibrium textures indicate the following transformations:

$Hb \rightarrow Hy$	(relict Hb within Hy)
$Pl \rightarrow Ga$	(wormy Pl surrounded by Ga)
$Bi + Ga \rightarrow Pl$	(Pl separates Bi and Ga)
Pl is recrystallized	(120° junctions)
Di is recrystallized	(120° junctions)
Q2 is recrystallized	(120° junctions)

(Note: Ab = Albite, Alm = Almandine, An = Anorthite, Bi = Biotite, Cp = Clinopyroxene, Di = Diopside, Ga = Garnet, Hb = Hornblende, Hy = Hypersthene, Op = Orthopyroxene, Or = Orthoclase, Pl = Plagioclase, and Qz = Quartz.)

Dewaard (1965a and b, 1967), lists the following reactions for the entrance into the granulite facies in metabasites:

2 Bi + 12 Qz \leftrightarrow 8 Op + Alm + 4 Or + 4 H2O 700° C minimum at 10kb, PH2O Pload

Hb + 4 Qz \leftrightarrow 3 Op +Cp + Ab + H2O 700° C minimum at 10kb, PH2O Pload

 $Op + An \leftrightarrow Cp + Alm + Qz$ 760° C minimum at l0kb, PH2O Pload

The second two may be combined defining the entrance to the pyroxene-granulite subfacies from the hornblende subfacies (Buddington, 1966; Dewaard, 1967).

 $Hb + An + Op \leftrightarrow Alm + Cp + Ab + H2O$

All these minerals make up the composition of sample 15b. Sample 08 contains biotite but no orthoclase.

The rock has a basic composition similar to a basalt or andesite. The reactions listed occur in a water-undersaturated environment. This is more probable in a basalt rather than a "basaltic" sediment. They occur as beds parallel to the compositional layering possibly indicating basalt flows or sills prior to metamorphism. Both beds strike at large angles away from the northwesterly trend of diabase dikes found in other parts of the Ruby Range. I conclude that they were basalt flows or sills within the original sedimentary package.

Quartz hypersthene-garnet granulite.

This rock type crops out in two locations. The individual textures and weathering characteristics differ in some respects such as grain size and banding, but have most points in common petrographically. The rock of sample 38 weathers red-brown from the abundant hematite and it forms low, massive outcrops. Garnet porphyroblasts 3 to 4 millimeters stand out in hand-specimen. Poor exposure makes

it impossible to map the actual dimensions but hematite-stained soil covers a broad area around the outcrops.

Sample 30f represents a bed about 1 meter thick that contains pyroxene-poor layers 1 to 10 millimeters thick and magnetite layers 1 to 2 millimeters thick which parallel both the major bed and the foliation and appear to be remnant sedimentary layers. This rock type locally contains banded iron-formation. The bed behaved competently during deformation breaking into tabular blocks which retained their shape as the adjacent layers wrapped around their ends. The bed lies in a sequence of quartzitic gneiss, hornblende gneiss, and garnet-biotite-quartz-feldspar gneiss beds.

Garnet is the most abundant mineral in this rock type. In section 38 garnet porphyroblasts grow up to 4 millimeters across with quartz inclusions and in one grain a zircon inclusion. Magnetite and hematite rim many garnets. This possibly results from excess ferric iron not used by the growing garnet. Hematite forms by secondary oxidation of the magnetite. The rock is rich in iron, but the garnets now make up 42% of it. The iron was concentrated in the space left over. In section 30f, garnets are poikioblastic and some are sieve textured. They contain quartz inclusions except in the pyroxene-poor layers. They do not form porphyroblasts in this section.

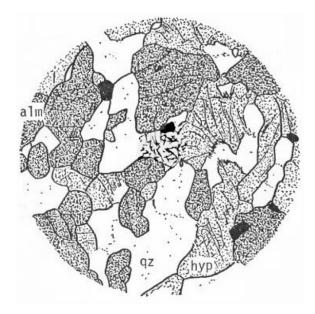


Figure 20. 1MT30F (p188). Quartz-hypersthene-garnet granulite. Section showing the granulitic texture.

Hypersthene and quartz commonly occur as a mosaic of recrystallized grains intersecting at 120° angles. In sample 38 the quartz shows strain shadows and the hypersthene is twinned indicating post crystallization strain in the rock. Sample 38

is porphyroblastic whereas sample 30f is qranulitic with a mosaic of grains intersecting at 120° angles (Fig. 20). No disequilibrium textures are apparent in either sample.

The abundant quartz and iron oxides in both samples, plus the bedded nature and associated quartzitic gneiss, hornblende gneiss, and garnet-biotite-quartz-feldspar gneiss beds around sample 30f indicate a sedimentary parent for this lithology. Magnetite layers 1 to 2 millimeters thick represent original banded iron layers. The iron was disseminated within the sample 38 parent sediment. This rock has a higher silica and lower magnesium content than in sample 30f. The mineral paragenesis exists entirely within the orthopyroxene zone of the granulite facies. This reflects the water content of the lithology as well as the temperature and pressure conditions because adjacent rock types have almandine amphibolite facies mineralogies.

Hornblende-hypersthene granulite.

There are two varieties of hornblende-hypersthene granulite which differ both in their appearance in outcrop and in thin section. Sample 10 represents a minor type best exposed on the ridge overlooking Dry Hollow from the southeast where it is exposed as a dark, massive bed lying concordantly within hornblende gneiss and quartz-feldspar gneiss. It consists of large amounts of hornblende and hypersthene and a minor amount of spinel. It contains stringers of felsic material with dark shelvages which evidently formed through local metamorphic differentiation. The rock is massive with a mosaic texture having many 120° angles at grain intersections. Disseminated crystals of dark green spinel give it a speckled appearance in thin-section. Secondary serpentinization occurs along fractures.

The spotted granulite of sample 42, a rock composed of equal parts hornblende and hypersthene accompanied by accessory magnetite and spinel, occurs as concordant and discordant layers and dikes. In one place it occurs as a dike accompanied by many parallel aplite veins emplaced along a fault. Weathered surfaces are black and spotted with brown ovals between 2 and 3 centimeters long and half as wide which commonly parallel the foliation. They mark large crystals of hypersthene which poikilitically contain hornblende and are surrounded by it. The hornblende matrix forms a polygonal mosaic structure with grains intersecting at 120° angles and without preferred orientation. The dikes appear to have been emplaced before the F1 deformation. Apart from the orientation of the oval spots, they seem to have behaved competently and were not greatly affected by the F1 event.

Quartzitic gneiss.

Abundant quartzitic gneisses occur within the hornblende gneiss and marble units. They normally occur as beds between 1 and 30 meters thick, but this increases to as much as 400 meters thick in the northern part of the area. The thick portions locally contain iron-formation, the largest of which was mapped by James and Nier (1960) on the Kelly Ranch. The gneiss is composed mostly of quartz but may grade into quartzofeldspathic beds resembling the quartz-feldspar gneiss. Variations in feldspar content and color banding mark layers parallel to the foliation which is defined by the elongate grains of feldspar and quartz (Fig. 21). Differential weathering conspicuously emphasizes small isoclinal folds in some exposures.

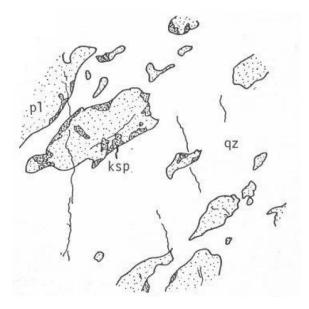


Figure 21. 1MT05B (p140). Quartzitic gneiss. Wide-angle view in reflected light showing elongate feldspar grains within qua Feldspar grains consist of plagioclase (light stipple) with minor orthoclase along the edges (coarse stipple).

The unit appears to have originated as sedimentary accumulations of impure sand. The presence of iron-formation indicates that at least some of the deposition occurred under water. Although the mechanism of deposition of iron-formation is not well agreed upon, most experts feel that they represent marine chemical precipitates. The cyclic nature of banded iron deposits is probably due to cyclic changes in the depositional environment (Trendall, 1973).

Pegmatite.

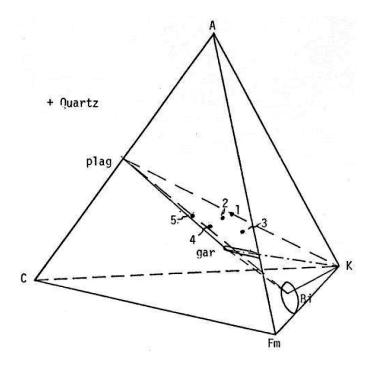
Pegmatite veins of a few centimeters to dikes over 20 meters thick occur throughout the area. They exist as massive, coarse grained, pink colored rocks. Microcline forms over three-fourths of the rock and quartz, commonly graphically intergrown with the microcline, makes up most of the difference. Plagioclase is minor at 1-5%. Migmatitic areas have much associated pegmatite which appears to be locally derived. The major F2 folding affects the smaller pegmatites and these do not appear fresh. The largest pegmatites cross-cut all structures and lithologies and appear the freshest in outcrop. I feel the older pegmatites formed locally during the metamorphism. The fresh pegmatites intruded post metamorphically, possibly related to Tertiary plutonic activity in the general region. Small plutons are found in the Tobacco Root and Highland Ranges, and the Boulder batholith lies beyond them to the north.

CHAPTER III

METAMORPHISM

Regional Metamorphism

Basement rocks in the Ruby Mountains underwent high-grade regional metamorphism. Okuma (1971), Garihan (1973), and Dahl (1977), established that conditions reached the upper amphibolite facies and ran locally into the granulite facies. Similar conditions existed regionally throughout southwestern Montana including the Highland Mountains (Gordon, 1979), the Tobacco Root Mountains (Cordua, 1973), the Madison Range (Thompson, 1960), and the Beartooth Mountains (Van de Kamp, 1969). Metamorphic conditions in the Hinch Creek area also reached the upper amphibolite facies and locally the granulite facies. The higher grades most probably represent areas locally undersaturated in water. The overall metamorphic conditions in the area still were higher than in the main part of the range to the southwest (Dahl , 1977).


Equilibrium assemblages, or mineral paragenesis as defined by Winkler (1976), were used along with disequilibrium assemblages to determine the metamorphic grade. Disequilibrium textures resulting from prograde reactions helped greatly. Lack of appropriate assemblages makes it impossible to put narrow pressure limits although the temperature limits are well defined. The criteria used to determine that equilibrium was reached are: 1) all minerals in thin-section must be somewhere in contact, 2) they lack disequilibrium textures, and 3) the assemblage contains no incompatible phases when plotted in an ACFmK diagram. Also, common 120° equilibrium/recrystallization grain junctions were noted in many samples. The following equilibrium assemblages occur in the area:

quartz-feldspar gneiss assemblage: quartz-plagioclase-perthite quartz-plagioclase-microcline quartz-plagioclase-perthite-garnet quartz-plagioclase-perthite-biotite quartz-plagioclase-perthite-biotite-garnet quartz-plagioclase-biotite

hornblende gneiss assemblage:

quartz-plagioclase-perthite-hornblende quartz-plagioclase-hornblende-garnet-diopside quartz-plagioclase-hornblende-garnet-biotite plagioclase-hornblende-garnet-diposide hornblende-plagioclase-quartz-garnet hornblende-plagioclase-garnet

granulite assemblage: hypersthene-garnet-quartz hypersthene-spinel Figure 22, shows the assemblages plotted on an ACFmK diagram. The assemblage: quartz-perthite-garnet-biotite-sillimanite-plagioclase cannot be listed as in equilibrium. The small amount of sillimanite prevents it from being in contact with each other mineral. The pairs sillimanite plus potassium feldspar and sillimanite plus quartz lack disequilibrium features so the conditions probably reached the sillimanite-orthoclase zone of the amphibolite facies.

Figure 22a.

ACFmK diagram of equilibrium mineral assemblages Average rock compositions shown are:

- 1) Quartz-Plagioclase-Perthite,
- 2) Quartz-Plagioclase-Perthite-Garnet,
- 3) Quartz-Plagioclase-Perthite-Biotite,
- 4) Quartz-Plagioclase-Perthite-Garnet Biotite,
- 5) Quartz-Plagioclase-Biotite.

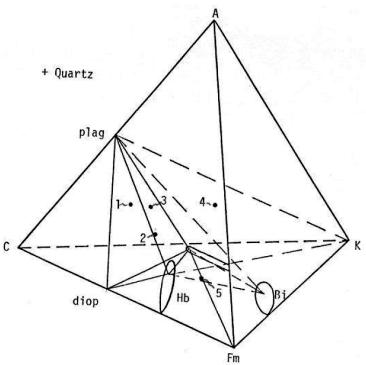


Figure 22b.

ACFmK diagram of equilibrium mineral assemblages

Average rock compositions shown are:

1) Quartz-Plagioclase-Hornblende-Garnet-Diopside,

2) Hornblende-Plagioclase-Quartz-Garnet,

3) Quartz-Plagioclase-Hornblende-Garnet-Biotite,

4) Quartz-Plagioclase-Perthite-Hornblende,

5) Hypersthene-Garnet-Quartz

In addition, the following disequilibrium textures proved very useful in recognizing reactions and defining the metamorphic conditions:

hypersthene grains with relict hornblende cores (Figure 19)

wormy plagioclase surrounded by garnet (Figure 18)

biotite and garnet separated by plagioclase (Figure 14)

skeletal enstatite growing on anthophyllite (Figure 17)

Lastly, many general characteristics of the rocks and minerals indicate high-grade conditions. Important characteristics include:

K-feldspar is perthitic hornblende is a dark olive-green biotite pleochroism ranges from orange to deep red, almost black

many samples have a granulitic texture

plagioclase composition ranges from An27 toAn42

non-injection migmatites are common in the study area

The presence of perthite and hypersthene with quartz restricts the lower temperature conditions of the rock. At pressures between 5.5 and 6.5 kb, the minimum temperatures for the formation of both perthite and hypersthene with quartz are around 750°C in water saturated rock, PH2O = Pload (Fig. 23). The temperature could have been somewhat lower in the case of where PH2O < Pload. The paragenesis hypersthene-garnet-quartz indicates that the highest grades reached the orthopyroxene zone in rocks of appropriate composition. These samples have massive, granulitic textures as well. Since the majority of the rocks in the area reached the upper amphibolite facies, the presence of higher grade assemblages most probably represent areas locally undersaturated in water.

The disequilibrium assemblage anthophyllite-quartz-garnet-enstatite defines the upper temperature limit. According to the phase rule, being on the reaction boundary reduces to one the number of degrees of freedom, eg, the temperature is defined at any pressure, or vice-versa (Hyndman, 1972). For pure magnesian anthophyllite and enstatite, the reaction temperature between 5.5 and 6.5 kb pressure is just above 800°C where PH2O = Pload (Fig. 24). The reaction anthophyllite \leftrightarrow 7 enstatite + quartz + water, yields water and would react at lower temperatures in PH2O < Pload conditions. In addition, the presence of ferrous iron in the minerals as is the actual case will also generally lower the reaction temperature.

The disequilibrium textures between biotite and garnet discussed in Chapter II (page 38) also help define the upper temperature limit in PH2O < Pload conditions. The unbalanced reaction Hb + An + Op \leftrightarrow Alm + Cp + Ab + H2O defines the entrance to the granulite facies at approximately 760°C @ 10kb for conditions undersaturated in water (Buddington, 1966; Dewaard, 1967). Because of the steepness of the P/T reaction curves at high grades, the temperature at 6kb is probably not significantly different.

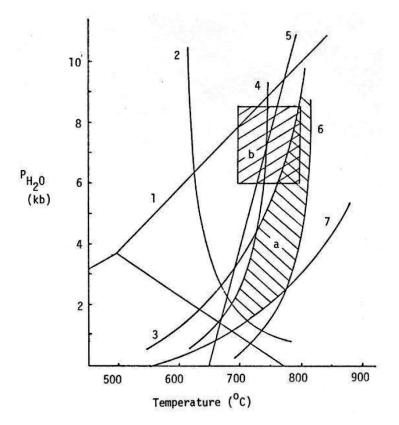


Figure 23. Temperature-pressure diagram showing the field of metamorphism for this study (a) and the field determined by Dahl (1977) for the Kelly Iron-Formation (b). Reactions shown are:

- 1) Ky \leftrightarrow And \leftrightarrow Sill (Holdaway, 1971),
- 2) minimum melting curve for common granite (Thompson and Alger, 1977),
- 3) Mus + Qz \leftrightarrow Ksp + Sill + H2O, (Beach, 1973)
- 4) formation of hypersthene (Hyndman, 1972, p. 313),
- 5) Ksp \leftrightarrow Perth (Huang and Wyllie, 1975),
- 6) Anth \leftrightarrow Ens + Qz + H2O (Winkler, 1976, p. 162)
- 7) breakdown of Hb + Qz (Hyndman, 1972, p. 313).

Although these reactions represent PH2O < Pload conditions, it must be remembered that most of the area probably was saturated in water. The conditions were above the minimum melting temperature for the system quartz-plagioclase-orthoclase + water. Anatectic melting in water saturated rocks of granitic composition must have occurred. Migmatites found locally throughout the area support this conclusion.

Dahl (1977) has performed electron microprobe geothermometry and geobarometry on rocks from the Kelly iron deposit in the area. The results based on his work indicate a temperature of $745 \pm 50^{\circ}$ C, and a pressure of 6.0 to 8.5 kb (Fig. 23). Little in the way of pressure limits were found in the present study but the temperature limits are well defined. The actual temperatures reached during metamorphism were probably slightly higher than those indicated by Dahl. Figure 23 shows the data given by Dahl and may be compared to the results of the present study.

Retrograde Metamorphism

The effects of retrograde metamorphism are not strong in the study area. Moderate to little or no alteration exists in most sections studied. The types of alteration found include chlorite after biotite, sericite in plagioclase, epidote in one amphibolite section, serpentine in fractures of ultramafic rocks.

The minerals produced indicate greenschist facies or lower conditions. The time of retrograde metamorphism could have been during the waning stages of the high-grade event, or a later low-grade event. In any case, the effects are minor to nonexistent in the area. Only sericite alteration in plagioclase commonly is present in most sections studied.

CHAPTER IV

STRUCTURE

Multiple deformations have occurred in the basement of the Ruby Range. The earliest folds F1, are characterized as similar and isoclinal with the development of axial plane schistosity (Garihan, 1973). The fold axes plunge northeast at moderate angles. The second folding, F2, formed broad open folds coaxial with F1 in the central and northern Ruby Range. Open to isoclinal F2 folds not coaxial with F1 exist in the southern Ruby Range (Okuma, 1971). Okuma found evidence of an F3 deformation folding both F1 and F2. This F3 fold axis trends north-south.

Faults in the range generally trend north northeast and cut all the folds. Exposure in fault zones is poor and most are located by juxtaposition of rock units or traced from air photographs. Precambrian diabase dikes follow some of these faults in the southern Ruby Range. I have seen no evidence to indicate whether dikes intruded along Precambrian faults, of whether the faults are Tertiary in age and followed the dikes as planes or weakness.

Folding

Garihan (1973) showed that two periods of folding occurred in the basement immediately to the southwest of the Hinch Creek study area. Both sets are recognized in the study area and his terminology is retained.

F1 structures. The earliest recognized period of deformation produced similar style isoclinal folds on a scale of several centimeters to several tens of meters (Fig. 12). The best exposures of this occur along the north side of Hinch Creek valley in section 32. The folding also produced axial-plane schistosity and regional foliation through the recrystallization and growth of new minerals. Quartz and feldspar commonly occur as elongate grains that parallel the foliation and compositional layering. Compositional layering parallels foliation except along the noses of isoclinal folds. Structural transposition is possible throughout the area, but was only found on a scale of a few tens of meters or less.

F2 structures. The second deformation has formed the conspicuous northeast plunging antiform/synform pair which dominates the area. The axis of this major structure strikes between 055° and 065° and plunges between 50° and 70° (Fig. 24). The structure forms a broad, open fold. Marble units behaved competently during the deformation, pinching off and flowing into small lenses along the tight noses of some folds. Thin quartz lenses and layers may be folded and broken within structureless marble.

I subdivided the area into thirteen structural subdomains in order to analyze smaller scale changes and variations in the gross overall structure (Fig. 25). The basis for subdividing the area consists of:

1) domain boundaries should parallel structural or lithologic boundary, and

2) the structures within a domain should show a single consistent pattern. The analysis is based on lower hemisphere poles to the regional foliation plotted on a Schmidt equal-area stereo net (Fig. 26a-m). Measurements on F1 fold axes were not taken but the beta values obtained from the stereo nets correspond to and are plotted on Figure 25. The concentration of data varies from one domain to another and affects the reliability of interpretation.

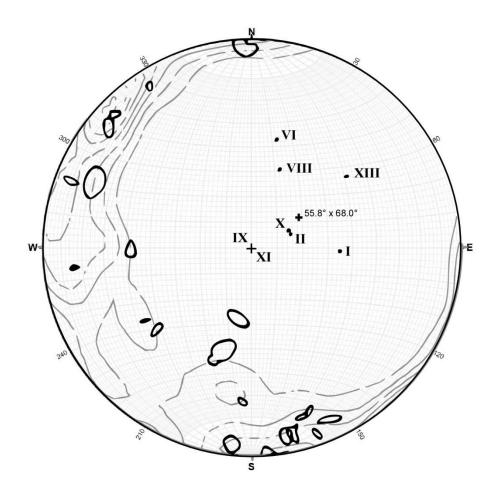


Figure 24. Lower-hemisphere diagram showing the maximum concentration contours of poles to foliation from each domain plotted together along with measured beta points showing the average fold axis attitude found in eight of the domains (labeled). Average of eight Beta: 55.4° , 65.6° .

[2021 Addendum: Contours for full dataset analysis (342 measurements), Beta: 55.8° by 68.0° , Best fit great circle (strike, dip RHR = 145.8° , 22.0° . Appendix 8]

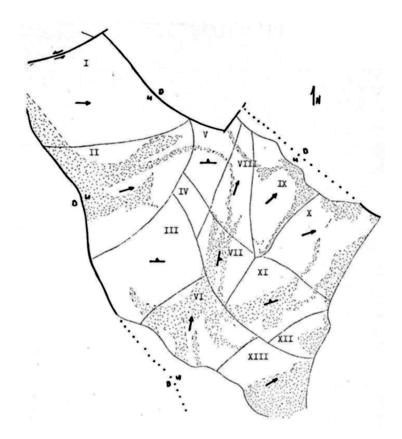
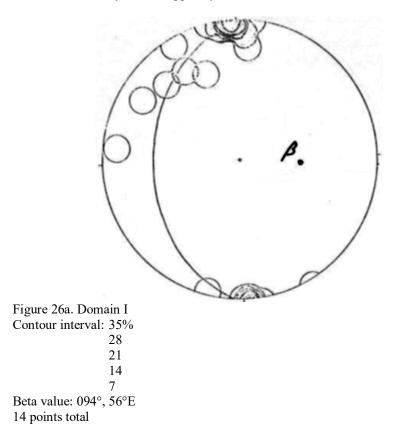
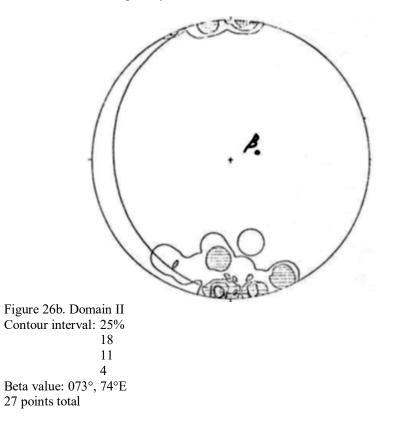



Figure 25. Map of the study area showing the domain subdivisions, and the average attitude of inferred fold axes and foliations within each domain.

Domain	Beta			points
	strike	dip	quad	
Ι	94	56	Е	14
II	73	74	Е	27
III				18
IV				5
V				14
VI	13	46	Ν	31
VII				19
VIII	19	58	Ν	45
IX	47	90		35
Х	71	74	Е	55
XI	70	85	W	15
XII				5
XIII	56	42	NE	17
Average	55.4	65.6	NE	239

Domain I.


Domain I consists mostly of hornblende gneiss and quartzitic gneiss metasediments. James and Wier (1960) have mapped the Kelly Ranch showing an east-plunging synform with the major iron deposit exposed in the center. Quartzitic gneiss surrounds the iron formation and grades away from the synform core into hornblende gneiss. This domain differs from the dominant structural pattern of most of the remainder of the study area to the southeast. Structures trend east- west rather than northeast-southwest. A weakly defined girdle of poles to foliation agrees with the attitude of the synform mapped by James and Wier.

Domain II.

This domain forms the transition between the east-west structure of Domain I and the northeast-southwest structures to the east. Again the girdle of poles to foliation is not well defined. The marble units form important structural marker beds within the domain. They strike between 050° in the eastern part of the domain to 090° in the western part. Lack of data prevents further subdivision of the domain.

The domain contains the western limb of the broad antiform. It dips steeply to the north and northwest. The marble continues to the west where it folds around the iron formation, creating the synform of domain I.

Domain III.

Fairly uniform quartz-feldspar gneiss dominates the domain with marble and hornblende gneiss included in the southern part. Poles to foliation form a cluster indicating an average attitude for all the foliation planes. To the south, the foliation in the hornblende gneiss strikes more northwesterly. This domain is separated from domain VI by the lack of north-south and northwest-southeast structures, and by the contact between the marble and the quartz-feldspar gneiss.

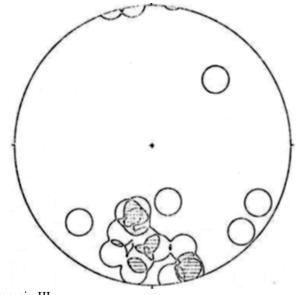
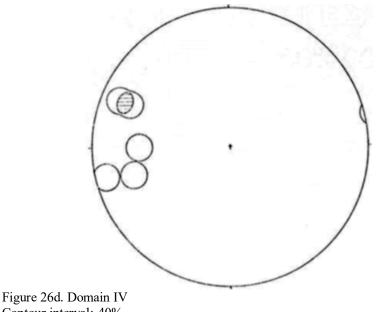
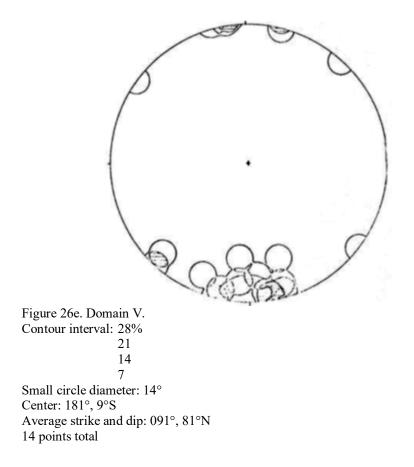



Figure 26c. Domain III Contour interval: 17% 11 5 Cluster center: 183°, 30°S Average strike and dip: 093°, 60°N 18 points total

Domain IV.


Domain IV exists in the negative sense that it does not fit well into any adjacent domain. Structurally it resembles domain VII representing north-south foliation dipping east. Physically it lies in the core of the antiform. This position relates it more with domains III and V. Defined by only five points, its significance remains uncertain.

Contour interval: 40% 20 5 points total

Domain V.

This occupies the nose of the antiform. The marble forms the best marker bed cutting across the domain and dipping north. Poles to the foliation appear to form a small circle of 14° radius about a point 181°, plunging 9° south. The small circle suggests a superimposed smaller scale open fold upon the main fold. Without more and different kinds of data, the direction and plunge of the axis cannot be found. For the major structure, the foliation dips north outward from the antiform. Due to the narrowness of the domain, not enough variation exists to indicate the direction and plunge of the axis of the antiform.

Domain VI.

This domain contains the interlayered marble and quartz-feldspar gneiss at the nose of the synform. Marble beds clearly follow around the synform near the nose, but to the southwest they trend north-south. The data loosely defines a girdle of poles to foliation on the stereo net. The exact map location of the axis is not easily placed because of the openness of the fold in the domain. To the north- west the nose becomes tighter and the axis more clearly defined.

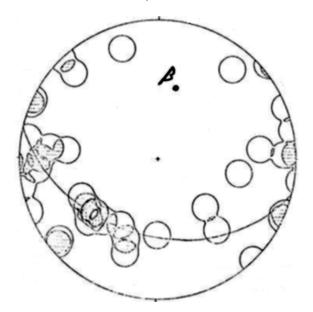
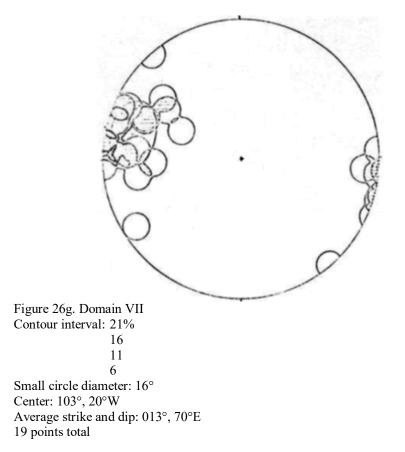
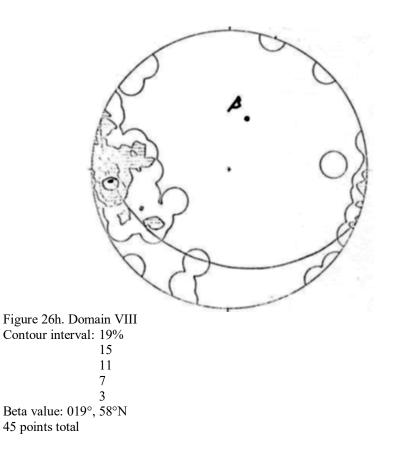



Figure 26f. Domain VI Contour interval: 13% 10 7 4 Beta value: 013°, 46°N 31 points total

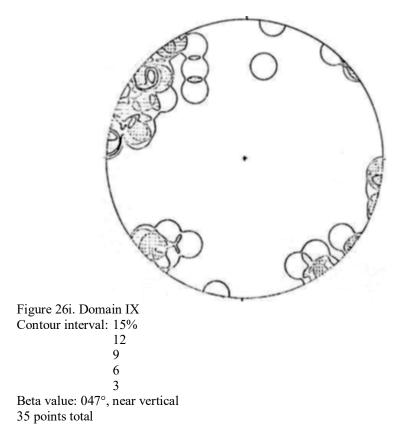
Domain VII.

This domain, along with domain VIII covers the central limb of the antiform synform pair. The change in thickness of the marble along with the flattening and ending of the western marble bed forms the basis of the subdivision of the limb. Domain VII covers the south half of the limb. The marble unit separates the hornblende gneiss on the east from the quartz-feldspar gneiss on the west.


Poles to foliation form a small circle 32° in diameter around a point oriented 103° , plunging 20° west. This results from a small superimposed open fold on the main structure. As in domain V, the data is insufficient to determine the direction and plunge of the fold axis. The relative ages between this fold and the major fold cannot be shown. Both are post F1.

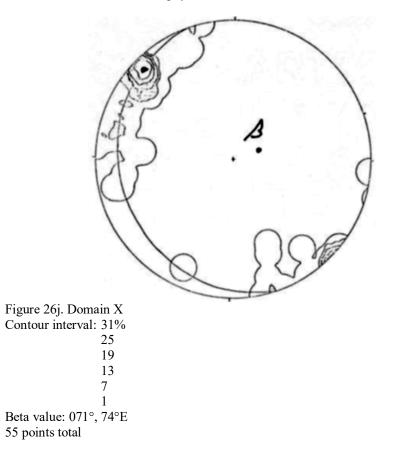
Domain VIII.

The northern half of the central fold limb dominates domain VIII. The beds of both domains VII and VIII dip east towards the Synform. Combined with the outwardly dipping beds of domains V and II, the four domains define the western fold as an antiform. The marble beds mark the shape of the antiform in outcrop.


The west half of the girdle of poles to foliation shows up on the stereo net. The beds dip steeply, generally over 60° and commonly in the upper 70's. This increases in the center of the synform where the fold axes plunge nearly vertical.

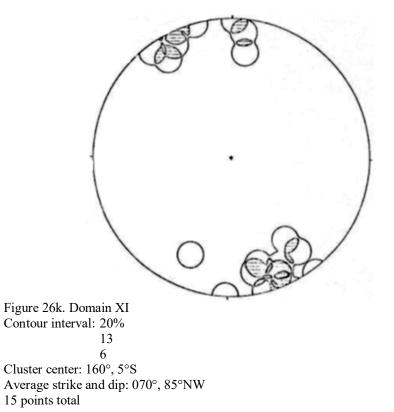
Domain IX.

Domain IX occupies the center of the synform bounded by the marble on the east and the quartzitic gneiss on the west. A small ultramafic body crops out in the center of the domain on the axis of the fold. Desmarais (1978) found that other ultramafic bodies in the Ruby Range commonly lie on the axes of folds. He concluded that they were mobile during the folding phase, possibly being emplaced at that time. Metasedimentary units dominate the domain. The marble marker bed reveals an interesting structure. The east arm of the marble thickens and folds back across the axis of the main fold. Because the foliation bends around with the marble, this fold occurred after F1, probably related to the F2 phase of deformation. The relative ages between the limb fold and the main fold are uncertain. It was folded during or before the main phase because the main fold also folds the marble limb where they cross. A critical area adjacent to the northeast is covered and limits interpretation.

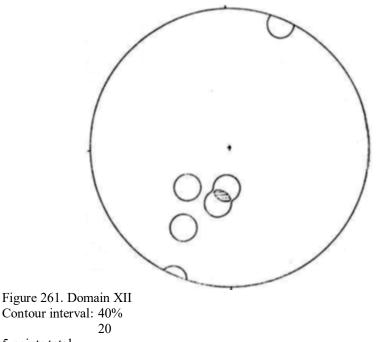

Poles to foliation concentrate in groups along the perimeter of the stereo net. The northwestern concentration indicates that the axial plane strikes approximately 45° northeast, but the fold axis plunges nearly vertically.

Domain X.

This domain consists of the northern half of the synform's eastern limb. Rock types range from hornblende gneiss on the west to marble, hornblende gneiss, and amphibolite on the east. Some bedding in the domain, especially near Hinch Creek is isoclinally folded by F1 deformation.

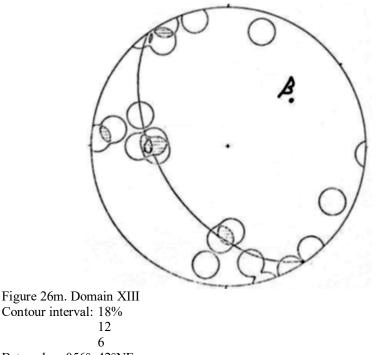

The foliation dips steeply to the east on this limb showing that it is slightly overturned. Poles to foliation form a partial girdle, enough to weakly define a beta position. A smaller wave on the main fold shows up on the map as the bulge to the northwest in marble and anthophyllite beds.

Domain XI.


Domain XI indicates the south half of the synform's eastern limb. I based the subdivision on the fact that foliation in this area dips steeply northwest while the foliation of domain X dips steeply southeast. Both are near vertical. The boundary follows the prominent cross-cutting pegmatite and is in line with the domain VII and VIII boundary. Poles to foliation plot loosely as a cluster. This gives an average strike of 070°, and a dip 85° northwest.

Minor isoclinal folds exist within the domain, mostly within the marble unit. This results in thickening the marble bed on this limb. Insufficient data prevents me from assigning an F1 or F2 designation to these smaller folds. The noses are broken and poorly exposed.

Domain XII.


This domain, as in the case of domain IV, exists in a negative sense of not fitting with adjacent domains. Physically this is represented by a marble unit extending into the quartz-feldspar gneiss. It does not connect to adjacent marble units within the area. The five points defining the domain are not interpretable.

5 points total

Domain XIII.

This domain occupies the southern corner of the map area. The thick marble unit dominates it on the south, balanced by quartz-feldspar gneiss to the north. Isoclinal folding and possible plastic flowage cause thickening in the marble. One isoclinal fold was mapped within the marble atop the east-west trending hill in the center of section 8. Lack of exposure makes it impossible to determine the extent or attitude of this isoclinal folding. The trend of fold axes and the position of the domain relates this to the east limb of the synform. The northwest trend separates this domain from the more north- south trending domain VI.

Beta value: 056°, 42°NE 17 points total

Summary of folding.

The earliest folding, F1, in the area occurred as isoclinal similar-style folds. Garihan (1973) found the fold axes to plunge northeast at "moderate" angles, moderate to steep in this study. The deformation coincided with the highest grades of metamorphism as indicated in Chapter III. This deformation was accompanied by mineral growth and recrystallization to create the regional foliation found in the area.

The second deformation, F2, folded the foliation and compositional layering, resulting in the broad northeast-plunging fold that dominates the structure of the area. The presence of smaller scale folds complicates the interpretation. The age relationships are unknown between these and the F2 fold. These are smaller in scale and not found throughout the study area; this suggests a relationship with the F2 rather than a separate regional folding event. No evidence was found for a third folding phase in the area.

Faulting

Within the study area two northwesterly trending faults were mapped but neither could be traced along strike more than a few tens of meters. Other faults in the area were indicated by gossens and prospect pits with exposed malachite and limonite in the shear area. Hornblende-hypersthene granulite occupies one fault. It probably represents a small serpentinite dike injected prior to metamorphism. This shows that some faulting occurred before the onset of metamorphism and deformation.

Major faults bound the area on two sides. To the west the study area sits against Paleozoic sedimentary rocks in contact with the basement along north-northwesterly vertical faults. These faults, active in the Tertiary period form a part of a series of northwest "master" faults mapped by Tysdal (1970) (Figure 1). On the north the Tertiary range-bounding fault system brings the basement into contact with Paleozoic sedimentary rocks. The faults here are covered by surficial sediments.

CHAPTER V

CONCLUSION

The rocks within the area represent a package of metasedimentary with some interlayered metavolcanic units. During high grade metamorphism the region was intruded by a granitic pluton which now forms the structurally lowest unit. The metasedimentary lithologies of the area include hornblende gneiss, sillimanitegarnet-biotite-quartz-feldspar gneiss, quartzitic gneiss, iron-formation, and marble representing respectively: carbonaceous mudstone or shale, pelitic sediments, sandstone, iron-formation, and limestone. Interlayered with these in the structurally lower part of the section are amphibolites representing metavolcanic flows or sills. whether they existed as a primary unit of the sequence as flows, or were intruded as sills at a later time is unknown. The rock recrystallized completely during metamorphism, destroying any primary structures. It is possible that both flows and sills are represented.

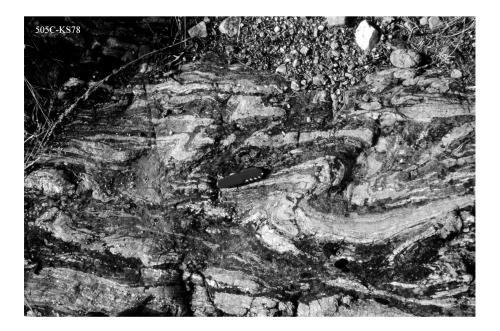
The sedimentary sequence starts at the base with marble and works upsection through metavolcanics and hornblende gneisses with thin layers of quartzitic and quartz-feldspar gneisses. The quartzitic gneiss becomes dominant and in the Kelly Ranch it contains banded iron-formation. Iron-formation also occurs in units crossing Hinch Creek to the south. The two iron-formations are at approximately the same structural level although the Kelly area contains much more quartzitic gneiss. The thickness of this gneiss may be controlled by isoclinal folding or the angle of exposure causing real or apparent differences in thicknesses between the units in the two areas. The structural positions permit a tentative correlation between the two. Above the iron-formation is a second marble layer followed by more quartzitic gneiss and thin layers of hornblende gneiss. Due to isoclinal folding and possible plastic flowage during the deformation, the true thicknesses of the original sedimentary units is unknown.

The origin of the quartz-feldspar gneiss has long been a problem. Nowhere in the Ruby Range has definite proof of either a sedimentary or plutonic origin been found. In the Hinch Creek study area the gneiss lies concordantly below the main marble unit. It shows no cross- cutting relationships, but in the southern part of the area it interbeds with the marble. This bedding partially results from isoclinal folding but may also be due to original sedimentary layering, or intrusion of granitic melt as sills. Synkinimatic intrusion deep in the crust would not be expected to cause much cross-cutting or deformation of the country rock (Buddington, 1959). It is not unreasonable to conclude that all or much of the quartz-feldspar gneiss was formed as a granitic magma. The temperature and pressure conditions determined in the study area were well above the minimum melting curve for water-saturated granite (Fig. 23). Migmatitic areas are found throughout the study area indicating partial melting. The granitic composition and lack of any relict sedimentary features also points towards a possible plutonic origin

The major pre-metamorphic rock types were limestone, sandstones, pelitic sediments, and shales. Volcanic rocks make up a minor and possibly post-

depositional contribution to the package. The presence of iron-formation and limestone indicates deposition in a shallow marine environment. Shales and calcareous shales have a deeper or quieter environment of deposition. The package therefore most likely represents a marginal sea or shelf-type of environment. The lack of abundant volcanics suggests deposition during a period of minor or no tectonic and thermal activity, an inactive or trailing margin in the modern sense. The same case exists throughout much of the basement of southwestern Montana. Common rock types are repeated over and again, quartz-feldspar gneiss, biotitesillimanite schist, marble, hornblende gneiss, and amphibolite. The shelf area was regional in extent. The direction to the source area is unknown.

Sometime after deposition the entire pile was subjected to regional deformation and metamorphism. These may or may not have begun at the same time. The highest levels of temperature and pressure were reached during or after the first period of deformation with the growth of sillimanite on the F1 axial plant. Intrusion of the Dillon gneiss "pluton" occurred synkinimatically with F1. Crystallization during the deformation imparted a strong gneissic fabric to most of the unit. Textures and mineralogies found within the study area indicate that temperatures during metamorphism reached between 750° and 800°C with a pressure range between 2 and 8kb. Results of geobarometry done by Dahl (1978) show pressures of 6 to 8.5kb. If correct, the temperature range would be more restricted, between 750 and 800°C (Fig. 23). These conditions are found within the upper amphibolite to lower granulite facies. This agrees with metamorphic conditions reported from all the ranges with basement exposed in southwest Montana. This common high grade metamorphism throughout the region suggests a common period of metamorphism.


Much of the region experienced greenschist facies retrograde metamorphism. No evidence exists to show whether this was a late stage of the major event, or a separate younger event. The effects of this metamorphism in the study area are weak to nonexistent. After the first folding event a second deformation folded the foliation into a broad north-east plunging fold set. The age relationship between this and the greenschist metamorphism is unknown. The second deformation includes a smaller set of superimposed folds of undetermined relative age. No further folding occurred in the study area, but Okuma (1971) reports a north-south trending F3 fold in the southern Ruby Range.

lge (m.y.a.)	Event	Evidence	
ocene to present	Movement on northwest trending master faults and range bounding faults. Emplacement of basalt plugs.	Displacement of all lithologies from Precambrian units to recent valley-fill sediments.	
200	Exposure of the basement to the surface.	Basement metamorphic clasts incorporated into the lower Belt sedimentary rocks (Obradovich and Peterman, 1973).	
400-1700	Intrusion of diabase dikes on a northwest trend normal to the range axis.	Metamorphism in the dikes ranges from greenschis to unaltered. The intrusions may or may not hav followed a Precambrian plane of weakness. Woode (1975) reports a 1450my Rb-Sr isochron from a fresh diabase.	
600	"Ending" of the greenschist facies metamorphism	1600my is the most common K-Ar mica date reported from the Ruby Range (Giletti, 1966). Mica blocking temperatures range from 150° to 300° (Fountai personal comm.). Winkler (1974) puts a temperature range for the greenschist facies between 200° and 500°C. By 1600my the temperature had fallen into, and possibly below the greenschist facies.	
(sou F2 fo tigh isoc is a		Falling temperatures were probably due to slow uplift and erosion of the basement.	
	F3 folding (southern Ruby Range only)	Folds both F_1 and $F_2,$ not coaxial with either. Folds trend north-south (Okuma, 1971).	
	F2 folding tight to open folds, rarely isoclinal. Associated with F2 is another smaller-scale folding of uncertain age relationship.	Folds F1 to form a broad northeast-plunging antiform-synform pair in the study area.	
		No evidence was found to show whether the greenschist facies is a late stage of the high-grade event, or a separate younger event.	
	Intrusion of basic dikes and sills.	These cut F ₁ and are folded by F ₂ (Garihan, 1973.	
ar Pr Bi Ti	Highest grades of temperature and pressure reached after ${\sf F}_1$.	Metamorphism in the dikes locally reaches the granulite facies. They were intruded after $F_{\rm l},$ but still during the regional metamorphism.	
	Pegmatite intrusions during F_1 .	Heinrich (1960) found pegmatites foliated and concordant with ${\rm F_1}$ structures. These are not found in the present study area.	
	Beginning the upper amphibolite to lower granulite facies metamorphism.	No evidence was found to show whether the meta- morphism began at the same time as the F_1 folding phase. Sillimanite crystals growing on the F_1 schistosity show that the sillimanite- orthoclase zone was reached during $F_1.$	
		Rb-Sr whole-rock dates of 2700-2800 my are reported in the Ruby and adjacent ragnes (Giletti, 1966; Catenzaro, 1967; Wooden, 1975; Wooden and others, 1978; James and Hedge, 1980).	
	Synkinematic intrusion of the Dillon gneiss during F ₁ .	Crystalization during the deformation imparts the gneissic fabric in the unit.	
800	F _l folding isoclinal, similar-style folds with axial-plane schistosity. Folds plunge northeast at moderate angles.	Develops the regional foliation by re- crystallization and growth of new minerals oriented parallel to F ₁ .	
	Pre-syntectonic emplacement of ultramafic bodies.	Desmarais (1978) found that these bodies were probably crystallized, intruded, and serpentiniz before the beginning of regional metamorphism. They behaved competently during metamorphism and their association with the noses of folds in- dicates mobility during folding.	
pre-2800	Deposition of sedimentary units and intrusion of volcanic sills and flows. The sedimentary units indicate a shelf-type environment.	Shelf-type character of the sedimentary package. Limestones and magnetite iron-formation indicates shallow marine deposition.	

Table 5. Interpreted geochronology of events affecting the basement lithologies in the Ruby Range, southwestern Montana.

The last major event affecting the basement before it was exposed at the surface was the intrusion of a series of diabase dikes and sills. The process covered a long time span and affected the entire southwest Montana region (Wooden and others, 1978). The intrusion period went from 1700 my to 1400 my in the basement rock (wooden, 1975) and possibly to as recently as 1200 my in the Belt Supergroup (Obradovich and Peterman, 1973). The earliest dikes were intruded and metamorphosed during the regional greenschist facies event. Fresh diabase from the Ruby Range gives a Rb-Sr isochron of 1450 my, therefore the greenschist facies event had ended by then. No diabase occurs in the study area.

In conclusion, the rocks from the Hinch Creek study area formed in a shelf-type depositional environment. Neither the top, nor the base of this package is found within the study area. The entire package was subjected to intense deformation and upper amphibolite-facies metamorphism. This was followed by greenschist facies metamorphism and a second regional folding. This resulted in the broad antiform-synform pair which dominates the area. The area has been uplifted and exposed by vertical faults active since Tertiary time. Several Tertiary basalt plugs have punched up through the basement terrain but caused no observable deformation.

REFERENCES

Beach, A., 1973, The mineralogy of high-temperature shear zones at Scourie, N.w. Scotland: Jour. Petrol., v. 14, p. 231-248.

Berg, R.D., 1976, Geology and talc occurrences of the Greenhorn Range, Madison County, Montana: Text and open file map, Mont. Bur. of Mines and Geol., Butte.

Bielak, J., 1978, The origin of the Cherry Creek amphibolites from the Winnipeg Creek area of the Ruby Range, southwestern Montana: M.S. Thesis, Univ. of Montana, 45 p.

Buddington, A.F., 1959, Granite emplacement with special reference to North America: Geol. Soc. of Am. Bull., v. 70, pp. 671-747.

Buddington, A.F., 1966, The occurrence of garnet in the granulite facies terrain of the Adirondack Highlands--A discussion: Jour. Petrol., v. 7, pp. 331-335.

Catenzaro, E.J., 1967, Correlation of some Precambrian rocks and metamorphic events in parts of Wyoming and Montana: Mt. Geologist v. 4, no. 1, pp. 9-21.

Clarke, F.N., 1924, The data of geochemistry: U.S. Geol. Surv. Bull., no. 770, 841 p.

Cloud, P., 1973, Paleoecological significances of the banded iron-formations: Econ. Geol., v. 68, PP. 1135-1143.

Cordua, M.S., 1973, Precambrian geology of the southern Tobacco Root Mountains, Madison County, Montana: Ph.D. Diss., Indiana Univ., 247 p.

Dahl, P.S., 1977, The mineralogy and petrology of Precambrian metamorphic rocks from the Ruby Mountains, southwestern Montana: Ph.D. Diss., Indiana Univ., 280 p.

Desmarais, N.R., 1978, Structural and petrologic study of Precambrian ultramafic rocks, Ruby Range: M.S. Thesis, Univ. of Montana, 88 p

Dewaard, D., 1965a, The occurrence of garnet in the granulite facies terrain of the Adirondack Highlands: Jour. Petrol., v. 6, pp. 165-191.

Dewaard, D., 1965b, A proposed subdivision of the granulite facies: Am. Jour. of Science, v. 263, pp. 455-461.

Dewaard, D., 1967, The occurrence of garnet in the granulite facies terrains of the Adirondack Highlands and elsewhere, an amplification and a reply: dour. Petrol., v. 8, pp. 210-232.

Eugster, H.R. and Chou, I.M., 1973, The depositional environments o Precambrian banded iron-formations: Econ. Geol., v. 68, pp. 11 1168.

Friedman, G.M., 1959, Identification of carbonate minerals by stain methods: Jour. Sed. Pet., v. 29, no. l, pp. 87-97. ing

Garihan, J.M., 1973, Geology and talc deposits of the central Ruby Range, Madison County, Montana: Ph.D. Diss., The Penn. St. Uni 209 pp.

Garihan, J.M. and Okuma, A.F., 1974, Field evidence suggesting a non-igneous origin for the Dillon quartzofeldspathic gneiss, Ruby Range, s western Montana: Abstract in G.S.A. Abs. with programs, v. 6, no. 6, p. 510.

Garihan, J.M. and Williams, K., 1976, Petrography, modal analyses, and orig of the Dillon quartzofeldspathic gneiss and pre-Cherry Creek gneisses, Ruby Range, southwestern Montana: Northwest Geol., v. 5, pp. 4

Giletti, B.J., 1966, Isotopic ages from southwestern Montana: Jour. of Geophys. Research, v. 71, no. 16, pp. 4029-4036.

Goodwin, A.M., 1973, Archean iron-formations and tectonic basins of the Canadian Shield: Econ. Geol., v. 68, pp. 915-933.

Gordon, E.A., 1979, Petrology and field relations of precambrian metasedimentary and metaigneous rocks west of Twin Bridges, southwestern Montana: M.S. Thesis, Univ. of Montana, 90 p.

Hayden, F.V., 1872, Preliminary report of the United States Geological Survey of Montana and adjacent territories: U.S. Geological and Geographical Survey of the Terr., 5th Ann Rept., p. 65-85.

Heinrich, E.H., 1948, Pre-Beltian rocks near Dillon, Montana (Abs.): Geol. Soc. Am. Bull., v. 59, p. 1329.

Heinrich, E.H., 1949a, Pre-Beltian rocks near Dillon, Montana (Abs.): Am. Mineral., v. 34, p. 278.

Heinrich, E.W., 1949b, Pegmatite mineral deposits in Montana: Mont. Bur. of Mines and Geol., Memoir 28, 56 p.

Heinrich, E.W., 1950, Sillimanite deposits of the Dillon region, Montana: Mont. Bur. of Mines and Geol., Memoir 30, 43 p.

Heinrich, E.W., 1960, Geology of the Ruby Mountains and nearby areas in south-western Montana: Mont. Bur. of Mines and Geol., Memoir 38, PD. 15-40.

Heinrich, E.W., 1963, Paragenesis of clinohumite and associated minerals from Wolf Creek, Montana: Am. Mineral., v. 48, pp. 597-613.

Holdaway, M.J., 1971, Stability of andalusite and the aluminum silicate phase diagram: Am. Jour. Sci., v. 271, no. 2, p. 97-131.

Holland, H.D., 1973, The oceans: A possible source of iron in iron- formations: Econ. Geol., v. 68, pp. 1169-1172.

Huang, H.L., and Hyllie, P.J., 1975, Melting reactions in the system NaAlSi3O8 - KalSi3O3 - SiO2 to 35 kilobars, dry and with excess water: dour. Geol., v. 83, n. 6, p. 737-748.

Hyndman, O.W., 1972, Petrology of Igneous and Metamorphic Rocks, McGraw-Hill Book Co., New York, 533 p.

James, H.L. and Hedge, C.E., 1980, Age of the basement rocks of southwest Montana: Geol. Soc. Am. Bull., v. 91, part 1, p. ll-15.

James, H.L. and Nier, K.L., 1960, Geologic map of the Kelly Iron Deposit Madison County, Montana: U.S. Geol. Surv. Open file rept.

Klepper, M.R., 1951, Geologic reconnaissance of parts of Beaverhead and Madison Counties, Montana: U.S. Geol. Surv. Bull., 969-C, pp. 55-85, P1. 16, 1:250,000.

LaBerge, G.L., 1973, Possible biological origin of Precambrian iron-formations: Econ. Geol., v. 68, pp. 1098-1109.

Obradovich, J.D. and Peterman, Z.E., 1973, A review of the geochronology of Belt and Purcell rocks: Belt symposium, v. 1, Univ. of Idaho and Idaho Bur. of Mines and Geol., Moscow, pp. 8-9.

Okuma, A.F., 1971, Structure of the southwestern Ruby Range near Dillon, Montana: Ph.D. Diss., The Penn. St. Univ., 122 p.

Peale, 1896, Description of the Three Forks Sheet, Montana: U.S. Geol. Surv. Geologic Atlas, Three Forks Folio, no. 24, 5 p.

Rabbitt, J.C., 1948, A new study of the anthophyllite series: Am; Mineral., v. 33, PP- 263-323.

Spry, A., 1969, Metamorphic Textures; Pergamon Press, Oxford, New York, Sydney, 350 p.

Streckeisen, A.L., 1973, Plutonic rocks, classification and nomenclature recommended by the IUGS Subcommission on the systematics of igneous rocks: Geotimes, v. 18, n. 10. p. 26-30.

Thompson, A.B. and Algor, J.R., 1977, Model systems for anatexis of pelitic rocks, I. Theory of melting reactions in the system KAlO2 - NaAlO2 - A12O3 - SiO2 - H2O: Contrib. Min. Pet., v. 63, no. 3, p. 24;-269.

Thompson, H.U. Jr., 1960, Geology of the northern part of Cherry Creek metamorphic rocks, Madison Creek, Montana: Billings Geol. Soc., llth Ann. Field Conf. Guidebook, PP. 135-147.

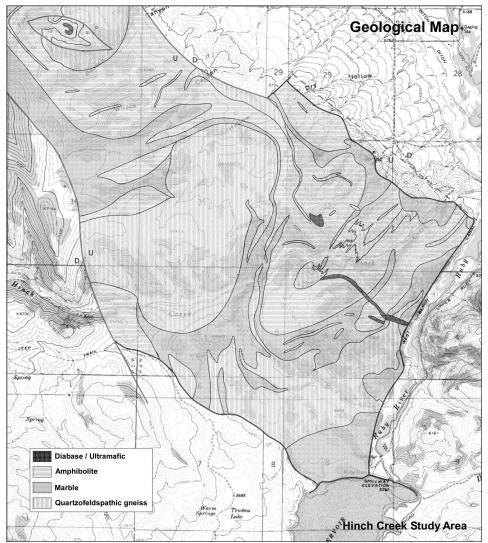
Trendall, A.F., 1973, Varve cycles in the Weeli Wolli Formation of the Precambrian Hamersly Group, western Australia: Econ. Geol., v. 68, pp. 1089-1097.

Troger, N.E., Optical determination of rock forming minerals, Part l, (English edition by H.U. Bambauer, F. Taborsky, and H.U. Trochim), 1979: Schweizerbart'sche Verlagsbuchhandlung Stuttgart, 187 p.

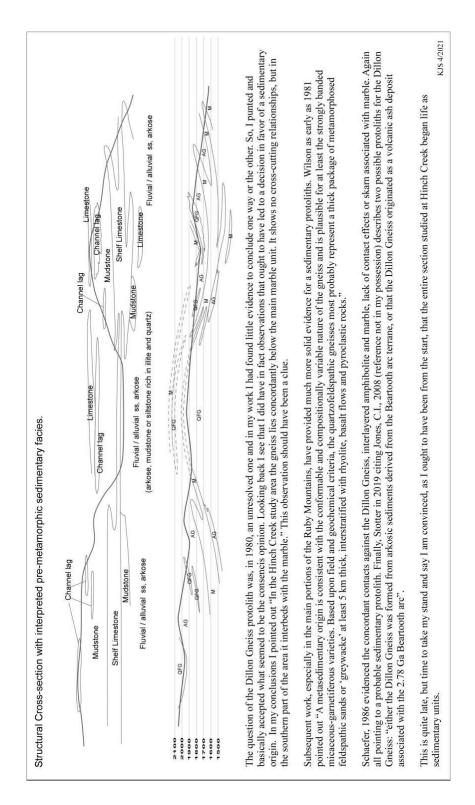
Tysdal, R.G., 1970, Geology of the northern end of the Ruby Range, southwestern Montana: Ph.D. Diss., Univ. of Montana, 187 p.

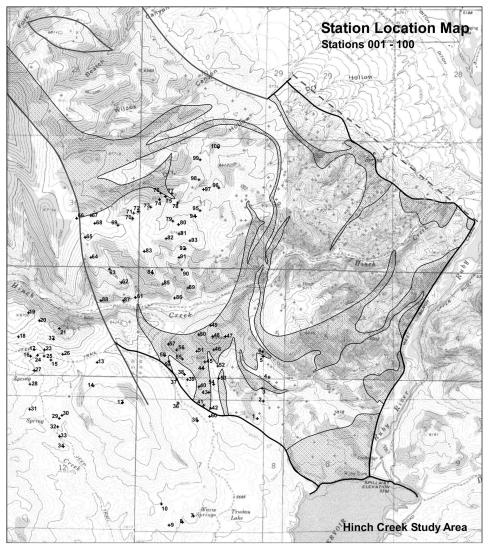
Van de Kamp, P.C., 1969, Origin of amphibolites in the Beartooth Mountains Wyoming and Montana, new data and interpretation: Geol. Soc. Am. Bull., v. 80, pp. 1127-1135.

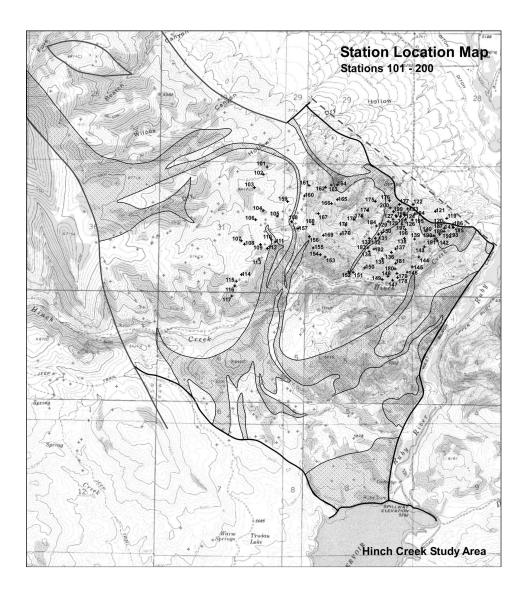
Winchell, A.N., 1911, Graphite near Dillon, Montana: U.S. Geol. Surv. Bull., 470, DP. 528-532.

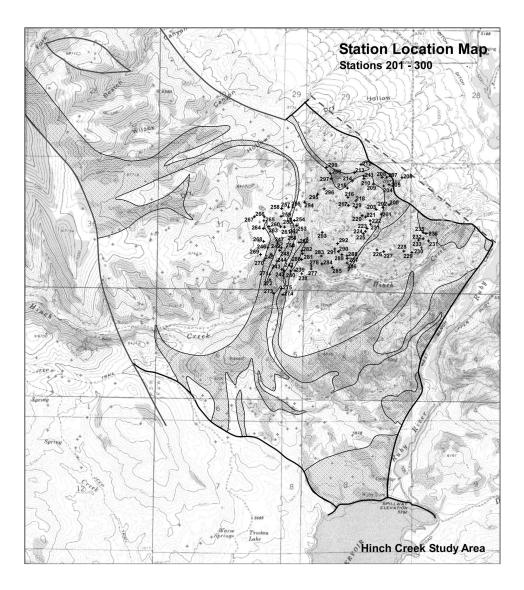

Winchell, A.N., 1914, The mining districts of the Dillon quadrangle, Montana: U. S. Geol. Surv. Bull. 574, pp. 105-1101.

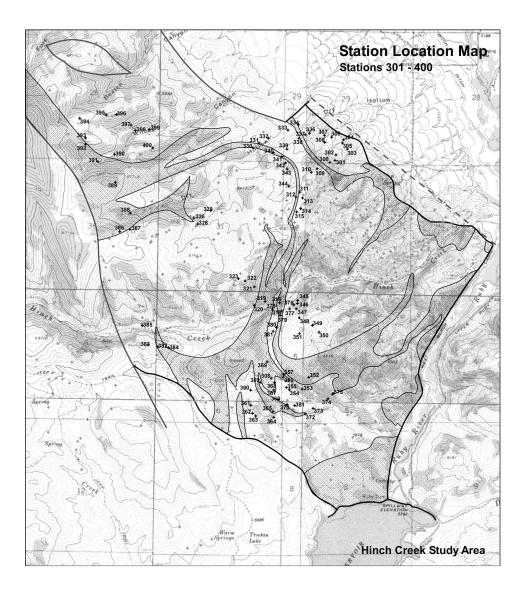
Winkler, H.G.F., 1976, <u>Petrogenesis of Metamortphic Rocks</u>: 4th ed., Springer-Verlag, New York, 334 p.

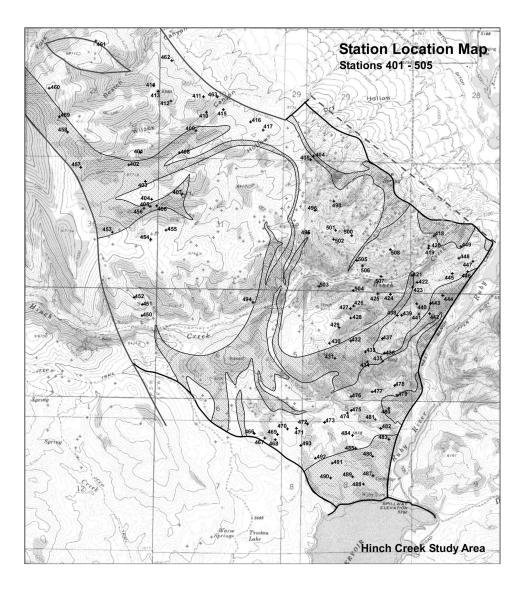

Wooden, J.L., T975, Geochemistry and Rb-Sr of Precambrian mafic dikes from the Beartooth Ruby, and Tobacco Root Mountains: Ph.D. Diss., Univ. of North Carolina.


Wooden, J.L., and Vitaliano, C.J., Koehler, S.W., and Rag1and, P-.C., 1978, The late Precambrian mafic dikes of the southern Tobacco Root Mountains, Montana: geochemistry, Rb-Sr geochronology, and relationships to Belt tectonics: Canadian Jour. of Earth Sci., v. 15, PP. 467-479.




https://www.lessmiths.com/~kjsmith/msthesis/c1geology.shtml





https://www.lessmiths.com/~kjsmith/msthesis/c4stations.shtml

Appendix 3: Field station descriptions

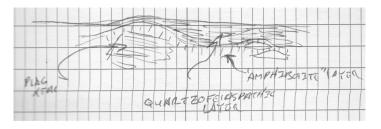
Sta Description

1 Quartzofeldspathic banded gneiss. N03W, 44E and N28W, 19NE

~40% feldspar, 50% Quartz, 10% mafics (variable) Outcrop weathers to a pink color and banding of the mafic layers is prominent. Fractures along mafic bands due to alignment of mica flakes. Quartzofeldspathic layers granoblastic 0.1 - 1 mm grain size. Minor amphibolite float on the ground nearby, not in outcrop. Some garnet in hand specimen.

The contact with the limestone is along the bottom of the gulch just to the south. Location is about 100ft above.

Sample 1MT01


2 Same rock type as Station 1, but recumbent folds are found in outcrop. Folds are 5 to 6 inches around.

Cross-cutting pegmatite veining.

- A very restricted outcrop of coarse grained (3-10 mm) marble. About 20-30 ft in diameter exposed in the bottom of a gulch.
- 4 Garnetiferous quartzofeldspathic gneiss. ~5 % garnet, 25% quartz, 65% feldspar + other.

Sample 1MT02

Outcrop weathers pink and is \sim interlayered with: 1MT02A, garnetiferous amphibolite (Biotite garnet gneiss) \sim 40% garnet, 40% quartz, 30% Biotite.

The felsic layers are along bedding and the strike and dip in the amphibolite is: $E/W 45^{\circ}N$

The contact between the two lithologies is sudden and the quartz seems to have been mobile.

Felsic layers appear to have been mobile with pod and bouden shaped lenses along the foliation of the amphibolite, which is actually a Biotite garnet gneiss.

5 Biotite gneiss (migmatitic) N7W, 66°E

Looks very migmatitic with bands of felsic pods, boudens and lenses with more mafic interlayers.

Quartzofeldspathic Augen Gneiss

6 Marble.

This begins to crop out about $\frac{1}{2}$ way up the south side of this knob and I can see large outcrops down where the two gulches meet.

7 Grey limestone. 149°, 15°NE

Massive, fairly coarse grained.

8 Sandy calcareous mudstone. 35°, 28°SE

This is a sandy clayey mudstone with a lime cement. It is cross bedded and contains pebbles to boulders of quartzite and quartzofeldspathic gneiss. It is colored white to red. Tertiary in age, sourced from basement.

9 Grey muddy limestone (same as sta 7). 50°, 7° SE

White on a fresh surface, weathers to a gray color. Fine to coarse grained, sometimes it contains small pods of numerous pebbles.

- 10 Grey limestone 100°, 6° NE
- 11 Grey to red limestone conglomerate. Contains angular fragments from 1 inch to ~1 ft across. Much chert. Really horrible stuff.
- 12 Same grey/pink limestone. Fine grained with occasional chert or quartz nodules.
- 13 Quartzofeldspathic gneiss. Reddish pink, grain size 1-3 mm. a low, rounded outcrop. The contact with the limestone is covered. Some float contains abundant garnet (!5-10%).
- 14 Pink limestone. 355°, 34° NE

Fine grained with abundant chert. This is the top of a massive bed of chert at least 50 ft thick.

- 15 Quartzofeldspathic gneiss.
- 16 Grey limestone. 180°, 21° W.

Sort of streaky looking. One piece of float nearby was fossiliferous.

- 17 Quartzofeldspathic gneiss.185°, 46° E
- Limestone.
 144°, 70° SW

Steeply dipping bed.

- 19 Limestone. 184°, 86° E
- 20 Limestone. No good bedding planes.

21 Fossiliferous limestone. 15°, 50° SE

The fossils, mostly corals, crinoid stems and chips/shards are in bands parallel to the bedding.

- 22 Chert bed. Lower on the slope is some chert "conglomerate", that is, angular chert fragments in a chert matrix. Fragments 1 mm to > 10 cm.
- 23 Limestone. 167°, 63° NE
- 24 Quartzofeldspathic gneiss. 100°, 19° NE
- 25 Limestone 66°, 48° SE
- 26 Contact between the quartzofeldspathic gneiss and the chert bed.
- 27 Quartzofeldspathic gneiss. 133°, 48° SW
- Quartzofeldspathic gneiss.The gneissic banding is interrupted by crenulation folding.
- 29 Quartzofeldspathic gneiss.64°, 44° NW
- 30 Contact between quartzofeldspathic gneiss and the chert layer. There is a thick gravel deposit in the valley below (to east).
- 31 Quartzofeldspathic gneiss. No strike or dip as outcrop is uncertain.
- 32 Abundant amphibolite float.
- Quartzitic gneiss.
 Mostly quartz and very coarse grained felsic, very little mafic material.
- Quartzofeldspathic gneiss.150°, 42° SW
- 35 Grey limestone.71°, 53° SE (outcrop or large partially buried boulder?)

Close to this outcrop is another with a cherty conglomerate (dark brecciated chert fragments in a light chert matrix).

36 Between stations 35 and 36 there is extensive chert float and some limestone float. I took a photo of the chert. Chert float and cow pies cover this entire south hillslope.

37 Mixed marble and felsic material.45°, 41° NW (approximate)

The marble is coarse grained (1-5 mm) and softer than my knife, but does not react well in HCl, dolomite? There are bands where the felsic material (reddish) forms a matrix between individual marble crystals and bands of fairly pure felsic material.

38 Garnet-bearing quartzofeldspathic gneiss.165°, 43° NE

Bands of garnet (up to 2 cm, mostly 1-2 mm). also contains lenses and pods of amphibolite. Elongate grains of quartz and feldspar (1-3 mm). Resembles the quartzitic gneiss in the lack of much mafics. Down in the gully (to east): Very migmatitic and some evidence of augen.

- Garnet-bearing quartzofeldspathic gneiss.110°, 50° NE
- 40 Marble. Grey, very coarse grained (2-5 mm). 15°, 45° NW
- 41 Marble.

40°, 44° NW

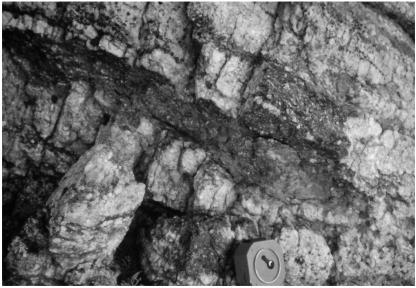
In between stations 40 and 41 were a couple pegmatite veins – follow bedding.

42 Quartzofeldspathic gneiss.

~Migmatitic with tight recumbant folds. As the contact is approached from the marble side, it begins to show numerous veins and nodules of quartz.

A curiosity: An ellipsoidal ($\sim 10 \text{ cm x 5 cm}$) piece of vesicular basalt with a notch running the length of the underside. Apparently shapedby hand and placed out here in the middle of nowhere. The upper surface is covered with the same lichen as on the outcrop. No lichen on the underside.

- 43 Marble. ~ 20 ft west of the contact. 17°, 75° SE
- 44 Marble. 180°, 74° E
- 45 Quartzofeldspathic gneiss.
 Small outcrops and float.
 In the area around stations 45 and 46, is much scoraceous black basalt as float. No outcrop or vent was seen.
- 46 Marble. 50°, 85° E
- 47 Marble. 23°, vertical.
- 48 Marble. 25°, vertical.
- 49 Quartzitic gneiss. 72°, 72° SE
- 50 Marble. 355°, 77° E
- 51 Marble. 45°, 78° SE
- 52 Quartzofeldspathic gneiss. 10°, 50° NW
- 53 Marble. 5°, 68° SE


- 54 Quartzofeldspathic gneiss. 78°, 81° W
- 55 Marble. 130°, 49° NE
- 56 Marble. 130°, 72° SW
- 57 Marble.
- 58 Marble. 153°, 51° NE
- 59 Quartzofeldspathic gneiss. 174°, 64° SW

Note: I took three photos between stations 42 and 35 in the quartzofeldspathic gneiss near station 60.

60 Quartzofeldspathic gneiss.

Hornblende Granulite stringer in Quartzofeldspathic Gneiss.

Biotite Quartzofeldspathic Augen Gneiss.

Garnet Quartzofeldspathic Augen Gneiss.

61 Banded quartzofeldspathic gneiss. 110°, 55° NE

> Bands of light quartzofeld spathic gneiss and dark amphibolite $\frac{1}{2}$ to 3 cm thick. Garnet bearing.

62 Quartzofeldspathic gneiss. 74°, 34° NW

Quartz feldspar with streaks of mafic material.

63 Quartzofeldspathic gneiss. 103°, 46° NE

Has local bands of amphibolite 1 cm to over a meter thick (not common).

64 Quartzofeldspathic gneiss. 95°, 60° N

Sample 1MT05

65 Quartzofeldspathic gneiss.

No good foliation planes. Scattered amphibolite float. A couple pieces of basalt.

- 66 Grey limestone. Several mines here, seem to be the source of the black chert, and possibly basalt.
- 67 Amphibolite.Poor outcrop. A bed perhaps 1-2 m thick, bounded by gneiss.

Sample 1MT06 (float found on outcrop)

- 68 Quartzofeldspathic gneiss. Poor outcrop. Garnetiferous, poorly banded.
- 69 Quartzofeldspathic gneiss.

Sample 1MT07

70 Amphibolite. 76°, 51° NW

- 71 Quartzofeldspathic gneiss. 96°, 62° NE
- 72 Amphibolite. 120°, 75° NE

Sample 1MT09

Approaching this knob, you pass layers of amphibolite and quartzofeldspathic gneiss $\sim 50 - 100$ m thick.


- 73 Quartzofeldspathic gneiss.97°, 81° NE
- 74 Hornblende-Hypersthene Granulite. 81°, vertical.

Sample 1MT10

There is no real "contact" between the gneiss and the amphibolite/granulite. The gneiss is banded with layers of amphibolite with a tendency to form mafic shelvages around felsic stringers.

- 75 Amphibolite to marble contact.
- 76 Marble to quartzofeldspathic contact. Bed is \sim 50 m thick.
- 77 Quartzofeldspathic gneiss.~25°, near vertical.

Prominent outcrop, variable strike and dip, cross-cutting bands of pegmatite about 3 cm thick.

- Quartzofeldspathic gneiss.In the bottom of the gully there is a small corral about a tiny spring (inactive). Outcrops here is a massive quartz pocket.
- 79 Biotite quartzofeldspathic gneiss. Minor outcrop, abundant float.
- 80 Biotite quartzofeldspathic gneiss. 85°, ~55° N
- 81 Biotite quartzofeldspathic gneiss.

133°, 65° NE

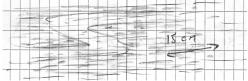
Good outcrop
Sample 1MT11

- Biotite quartzofeldspathic gneiss.98°, 80° NE
- Biotite quartzofeldspathic gneiss.
 134°, 56° SW (foliation or joint set?)

Garnets, but not banded with mafic material. **Sample 1MT12**

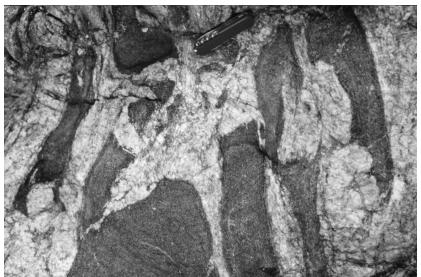
84 Quartzofeldspathic gneiss. 110°, 70° NE

Some augen present (minor).


- 85 Quartzofeldspathic gneiss.94°, 57° NE
- Quartzofeldspathic gneiss.
 Gneiss for the most part, with bands of amphibolite and amphibolite float.
 There are augen, both in the gneiss and amphibolite. There are stringers and lenses of felsic material in the amphibolite.

More mafic shelvages bound most or the felsic stringers in amphibolite.

Mafic-rich quartzofeldspathic gneiss.103°, 39° NE


The foliation is well developed but felsic bands sometimes seem to stop and fold back on themselves before continuing along foliation.


Much pegmatite cross-cutting the foliation. The foliation is folded (scale $\sim 2 - 15$ cm) in some places.

In one place a felsic layer stops and becomes ptygmatically folded across the foliation. It does not interrupt the foliation. Some augen is formed in the felsic layers (1/2 - 5 cm). Lenses of amphibolite 1/3 m thick.

Samples 1MTA-F

Migmatites Quartzofeldspathic Gneiss broken up pods of amphibole.

Meta Conglomerate

88 Amphibolite / Grey limestone contact.

- 89 Quartzofeldspathic gneiss.28°, 76° NW
- 90 Quartzofeldspathic gneiss. 96°, 70° NE

Sample 1MT14

- 91 Quartzofeldspathic gneiss.
- 92 Quartzofeldspathic gneiss. 73°, 79° NW
- 93 Quartzofeldspathic gneiss. 110°, 42° NE

There is some amphibolite float about, but none in the outcrop.

- 94 Biotite quartzofeldspathic gneiss.
- 95 Quartzofeldspathic gneiss. 73°, 84° NW
- 96 Quartzofeldspathic gneiss. 0°, 56° E

There is also an amphibolite bed $\frac{1}{2}$ - 1 m thick.

Sample 1MT15A-B

- 97 Quartzofeldspathic gneiss. 167°, 82° E
- 98 Quartzofeldspathic gneiss. 164°, 63° NE

There is a lot of amphibolite mixed in and a number of cross-cutting pegmatite dikes.

- 99 Quartzofeldspathic gneiss.Poor outcrop with a ~2 m bed of amphibolite.
- 100 Quartzofeldspathic gneiss. Questionable outcrop. Extensive gneiss float and about 10% amphibolite float.
- 101 Quartzofeldspathic gneiss. 86°, 69° N

Some pegmatite veins. Well mixed with amphibolite. Some minor folding.

102 Quartzofeldspathic gneiss.

Sample 1MT16

103 Quartzofeldspathic gneiss. 75°, 78NW

Fairly well mixed with mafic minerals. Some augen present, pegmatite veins also.

Sample 1MT17

104 Quartzofeldspathic gneiss. 103°, 82° NE

Some pegmatite veins. Little mafic minerals.

105 Quartzofeldspathic gneiss.5°, 87° E

Met a rattlesnake, let it go though, it was a youngster, ~2 ft.

- 106 Quartzofeldspathic gneiss.
- 107 Quartzofeldspathic gneiss.23°, 76° SE

Augen present. Moderate mafics present, some amphibolite float.

Sample 1MT18A-B (Could 18B be Berg's 'quartzitic gneiss'?)

108 Amphibolite. 23°, 68° SE

Bed ~ 2 meters thick. Sample 1MT19

- 109 Quartzofeldspathic gneiss.Poor outcrop. I am passing a fair amount of amphibolite float on the way.
- 110 Marble. Bed about 50-100 m thick

111 Amphibolite.135°, vertical to 68° SW

There is about 10m of felsic rock separating the amphibolite and marble. The amphibolite bed is \sim 100 m thick. Between the amphibolite and the felsic rock is a brown <u>tremolite rock</u>. This area is a prime candidate for some detail mapping.

Sample 1MT 21

112 Marble. 5°, 79° W

Fairly coarse grained, strange mineralogy.

Sample 1MT22

- 113 Quartzofeldspathic gneiss.
- 114 Quartzofeldspathic gneiss. Very little mafics, quartzitic gneiss? No good foliation planes. A bed of amphibolite about 2m thick striking uncertain. Perhaps just a pod or lens.
- 115 Quartzofeldspathic gneiss. 30°, 53° SE (questionable)

Pink, nice and typical QFG.

116 Quartzofeldspathic gneiss.87°, 62° N

Some augen present. Sample 1MT23

- 117 Quartzofeldspathic gneiss. No good bedding planes. Very little mafic material. Just to the south though is a typical gneiss that is rather bent up, with cross-cutting pegmatite veins.
- 118 Quartzite. 105°, 56° NE

Lots of slickensides and a fault. **Sample 1MT24** (Flathead SS) Slickensided surfaces are normal to the bedding. The quartzite is 20ft thick with a layer of quartz sand and pebble conglomerate on one end ('upper' surface). The 'lower' surface is in conformable contact with dolomitic coarse grained marble and which contains sand near the contact. **Sample 24A**

All Tertiary sediments. (rounded cobbles). Walking north to the gully I pass extensive float of quartz feldspar, biotite garnet gneiss, hornblende gneiss, massive chert (minor), and anthophyllite gneiss. Some massive amphibolite and a bit of diabase? Lastly, the chert is brecciated as at station 14 and there is limestone present.

119 Purple sandy shale, quartzite? 88°, 47° N

Outcrops in bottom of gulch. Fine grained and well lithified, some load casts are present in one piece of float.

Quartzite, tan. 60° , 33° N Grain size 0.5 to 5 mm. Bedding 2-3 cm thick. This sits conformably over the shale, about 10 m away.

120 Tan Quartzite. 112°, 60° NE

With crossbeds (\sim 3 cm). In a pit dug nearby it is seen to overlay the purple shale. This unit is the prominent ridge former.

121 Brown limestone. 123°, 58° NE

Massive with minor quartz pods. These form a series of flatirons along the range front. The bed is about 35 m thick.

- 122 Quartzite.
 - 126°, 78° NE

It is brecciated in places. Moving down section (westerly) it becomes purple and conglomeritic with quartz pebbles 1-10 mm, some bedding is apparent.

- 123 Marble. After 25 m you are in marble.
- 124 Contact with a folded quartz gneiss. Foliation 5°, vertical. In between the QG and the brown marble is a grey marble (here 10 m thick). More like what I am used to seeing. The quartz is about 2 m thick, then back into grey marble.

125 Marble. 36°, 84° SE

Sample 1MT26

126 Hornblende gneiss. 10°, 78° SE

A: **Sample 1MT27A** Hornblende gneiss bed 15 m thick.

B: **Sample 1MT27B** Biotite-bearing quartz feldspar gneiss. Contains lenses and augen of pink feldspar and quartz/feldspar mix. Bed ~ 35 m thick. Grades sharply into..

C: Pink quartz feldspar gneiss. Bed ~ 2 m thick.

D: Biotite quartz feldspar gneiss. With lenses and beds of unit C. Bed ~ 5 m thick.

E: Pink Biotite quartz feldspar gneiss. Same as before with more pink feldspar, augen are present and common. Bed \sim 35 m thick.

F: Biotite quartz feldspar gneiss. Same as D but with lenses, stingers and augen of pink feldspar. 25° , 72° SE. Contains a 2 m thick bed of dominantly quartz. Bed ~15 m thick.

G: Garnet-nearing, biotite quartz feldspar gneiss. Little to no pink feldspar in this unit. Bed \sim 5 m thick.

H: Hornblende-bearing garnetiferous, biotite quartz feldspar gneiss. Contains augen and stringers of quartz and feldspar. Garnets associated with mafic layers. Bed ~3 m thick.

I: Quartzite. Bed 1 m thick, grading into..

J: Garnetiferous, biotite quartz feldspar gneiss. Bed ~ 3 m thick.

K: Quartz feldspar gneiss. Feldspar is of white type, (not pink). Bed ${\sim}15$ m thick. $27^\circ,\,85^\circ$ SE

After this it all goes to hell...

Station 126 began at the bottom of the gully and worked up a draw towards station 124. Perhaps there is a fault just below (\sim 15 m) station 124 separating it from this section.

- 127 Quartz breccia in a limestone matrix.
- 128 Brown marble. Grades into the quartz/limestone breccia?
- 129 Same. 55°, vertical

This lithology is a ridge-former. Farther west along the ridge it dips 60° SE.

130 Marble.

65°, 78° SE

All the marble has bands of quartz running through it parallel to foliation.

131 Pegmatite.

A pegmatite with places where you can see large pink feldspar crystals with graphic quartz intergrowths.

Sample 1MT28A-B

- 132 Marble. 29°, 76° SE
- Hornblende gneiss.52°, 74° vertical

I think that I am back into the section I measured, (or one similar). Garnet hornblende gneiss, quartz, white feldspar gneiss, etc.

- 134 Garnet-bearing hornblende gneiss.35°, 63° SE
- Garnet Biotite quarts feldspar gneiss.45°, vertical

Many thin crosscutting pegmatite veins 3-5 cm.

136 Interlayered Biotite quartz feldspar gneiss and hornblende gneiss.43°, 78° SE

Layering $\frac{1}{2}$ to $\frac{1}{4}$ m thick.

- 137 Massive quartz.It is interlayered with the quartz-feldspar gneiss.
- 138 Quartz. 45°, vertical

Forms ridge to west and leaves the ridge here.

139 Amphibolite assemblage.42°, 77° SE

Garnet hornblende gneiss with several layers of massive amphibolite.

140 Marble / limestone to quartz. Massive quartz dominates the slope to the top. A fault seems to run across the top in an undetermined strike. A pit is dug into a quartz breccias in a limestone matrix. Some quartz blocks have cm-scale layering. 141 Biotite quartz feldspar gneiss. Really beat-up outcrop, needs detail mapping.

Sample 1MT29

142 Section as follows

A: Garnetiferous hornblende gneiss. Sample 1MT30A. Bed ~ 2 m thick. 68° , 65° NW

B: Quartz (90%) feldspar (10%) gneiss. **Sample 30B**. Bed ~ 2 m thick.

C: Garnet Biotite quartz feldspar gneiss. Sample 30C. Bed ~ 10 m thick.

D: Hornblende gneiss. **Sample 30D**. Bed ~10 m thick.

E: Quartz. Bed ~ 1 m thick.

F: Garnet pyroxene gneiss ($\sim 1/2$ m thick) grading into Biotite garnet quartz feldspar gneiss. An open fold is seen here. 77°,85° SE to 48°, 72° SE. Fold dies out. **Sample 1MT30F**. Bed ~ 10 m thick.

G: Quartzitic gneiss (massive?). 46°, vertical. Exposure becomes poor after this. Bed \sim 20 m thick.

Measurements began at the base of the gully.

143 Hornblende gneiss. 44°, 84° SE

Very good exposure in the gully.

144 Garnet Biotite hornblende gneiss. 68°, 74° SE

Grades into garnet quartz feldspar gneiss.

- 145 Garnet Biotite hornblende gneiss.42°, 84° SE
- Garnet Biotite hornblende gneiss.63°, 72° SE

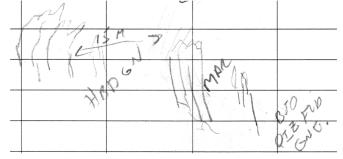
Locally augen bearing, lots of garnet.

147 Hornblende gneiss. 37°, 72° SE

Minor garnetiferous layers. Sample 1MT31

148 Garnet Biotite hornblende gneiss contact with Biotite quartz feldspar gneiss. There is much flow and similar folding in the hornblende gneiss.

- 149 Garnet Biotite quarts feldspar gneiss.39°, vertical
- 150 Garnet Biotite quartz feldspar gneiss.47°, 89° SE


With some hornblende-rich layers.

151 Biotite quartz feldspar gneiss.16°, 67° SE

Augen bearing. Sample 1MT32

152 Hornblende gneiss.18°, 84° SE

I crossed a ~5 m unit of marble on the way, view across gulch:

- 153 Garnet hornblende gneiss. To Quartz feldspar gneiss. Outcrop poor and lichen-covered. There seems to be a major switch in foliation from $\sim 30^{\circ}$ to $\sim 150^{\circ}$.
- 154 Biotite quartz feldspar gneiss. 111°, 79° NE

Ridge former.

- 155 Quartz feldspar gneiss. Quarts dominant.
- 156 Quartz feldspar gneiss. 170°, 81° E

Quartz dominant. Sample 1MT33

157 Biotite quartz feldspar gneiss.

159°, 74° E

158 Marble. 4°, 76° E

This layer is ~ 5 m thick, then it goes back to gneiss.

159 Biotite quartz feldspar gneiss. 148°, 54° NE

Some garnetiferous layers.

160 Hornblende gneiss. 175°, 62° E

Some \sim 2 cm pegmatite veins crossing foliation. Grades into Biotite quarts feldspar gneiss on top of hump to east.

161 Hornblende gneiss. 5°, 66° E

Augen present.

162 Garnet quartz feldspar gneiss / Hornblende gneiss mix. 11°, 69° E

Hornblende gneiss dominant. Sample 1MT34

163 Hornblende gneiss. 42°, 74° SE

Coarse grained, 2-3 mm. Sample 1MT35

- 164 Marble. 53°, 51° SE
- 165 Hornblende gneiss.
- 166 Garnet Biotite quartz feldspar gneiss. 141°, 82° E
- 167 Biotite quartz feldspar gneiss.169°, 77° E

With layers of hornblende gneiss and quartz feldspar gneiss.

- 168 Garnet Biotite quartz feldspar gneiss.159°, 77° E
- 169 Hornblende Biotite quartz feldspar gneiss.151°, 79° E

A little of everything..

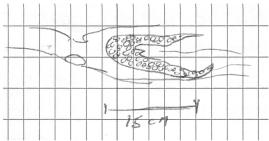
- Garnet hornblende quartz feldspar gneiss.174°, vertical
- 171 Biotite quartz feldspar gneiss.38°, 84° SE

I passed a lot of hornblende gneiss float on the way here.

172 Quartz feldspar gneiss / PegmatiteVery coarse grained in places. (possible extension of pegmatite of station 131).

Sample 1MT36

- 173 Garnet hornblende gneiss. One 2 cm thick pegmatite vein found.
- 174 Garnet quartz feldspar gneiss.49°, 77° SE


Garnets 3-7 mm in diameter and dominate sample, ~40%.

- 175 Garnet hornblende gneiss. 21°, 82° SE
- 176 Marble. 36°, 80° NW
- 177 Marble. 7°, vertical

Some purple layers in here.

178 Garnet biotite quartz feldspar gneiss.38°, 70° SE

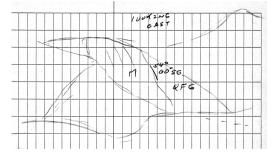
Bands on the order of a few mm to 10's of cm. Biotite / garnet layers are very schistose and lumpy with the garnets weathering out. Some pinching out and folding of garnet/biotite layers.

The garnet/biotite schist grades 'downsection' into a hornblende gneiss. This is all exposed in some prospect cuts.

179 Hornblende gneiss. 43°, 77° SE

Continuous with station 178.

180 Contact with Quarts feldspar gneiss.38°, 81° SE


Contact gradational with this station where it becomes dominant.

181 Quartz feldspar gneiss.36°, 85° SE

From station 181 to the top of the hill hiking across strike, the quartz feldspar gneiss becomes more and more biotite-rich with small augen I like to imagine are relict pebbles. Lithologies vary including quartz feldspar gneiss, biotite quartz feldspar gneiss, amphibolite and quartzite. Some pegmatite veins ~30 m.

- 182 Biotite quartz feldspar gneiss.54°, vertical
- 183 Marble.~48°, 60° SW (shot from across valley)

Single bed ~ 10 m thick.

184 Quartzofeldspathic gneiss, pegmatite.125°, 60° NE

Light quartzofeldspathic gneiss trending between amphibolite. Pegmatitic in places.

185 Marble. ~175°, 80° E

Contains lenses and pods of quartzite.

- 186 Flathead Sandstone.This is in fault contact against the main mass of marble.Note: At one place where the fault itself is visible, it faults marble striking and dipping the same as the ss layer against the main mass of marble.
- 187 Marble. 18°, 70° E

With lenses and pods of quartzite.

- 188 Quartzite / Marble. Increasing amounts of quartzite, now dominant over marble. Some quartz feldspar gneiss float. Some Iron formation float.
- 189 Marble.4°, dips variable, near vertical.
- Biotite quartz feldspar gneiss.67°, vertical.

Layers of non biotite-bearing $\frac{1}{2}$ - 3 cm. These non biotite layers pinch and swell into augen and are dominated by pink k-spar. Also massive quartz layers 20-30 cm.

Marble and Quartz feldspar gneiss. 166°, 78° E

> A bed of biotite quartz feldspar gneiss 4m thick completely concordant within marble. It forms a least-resistant bed to weathering. Contact is not gradational, it is sharp but concordant.

Marble and Quartz feldspar gneiss. 165°, 73° E

Another concordant bed of biotite quartz feldspar gneiss. Mostly quartz feldspar gneiss with some biotite. One lens of biotite-rich quartz feldspar gneiss about 20 cm (max) and 1 m long.

Biotite quartz feldspar gneiss dominated with beds of resistant marble 3-5 m thick.

193 Amphibolite gneiss. 170°, 69° E

> A concordant bed of hornblende gneiss with small layers 1 cm to 30 cm thick of quartz feldspar gneiss. Amphibolite dominant. Grades eastward over a half meter into a garnetiferous biotite quartz feldspar gneiss.

Cross-cutting this is a 1 meter thick medium grained (0.1-2 mm) pink pegmatite dike with a chilled margin next to the country rock and no foliation. Dike trends 105°.

Grades eastward into a hornblende (or biotite) schist. A quartz feldspar gneiss, hornblende gneiss, garnet quartz feldspar gneiss. All interlayered but a number of dikes crosscutting this messes everything up.

- 194 Flathead ss.
- 195 Hornblende gneiss. Low outcrop so no structure data. Hornblende-rich layers and hornblendeabsent layers 0.5 to 1 cm thick.
- 196 Quartz feldspar gneiss and pegmatite.35°, 74° SE

This is cut by a pegmatite. The contact is not sharp but the foliation appears to die out into the dike over 1 to 2 cm and the edge is irregular.

197 Biotite quartz feldspar augen gneiss.47°, 83° SE

Grades into beds of quartzitic gneiss. Lithologies that appear, some more than once: Banded biotite gneiss Quartz feldspar gneiss Garnet biotite gneiss Marble

198 Marble.

~145°, vertical to slightly east.

This attitude may be apparent on a joint pattern. Poor outcrop. It is normal to the regional trend (but parallel to the range front).

199 Marble.

152°, 86° E

There is a \sim 3 cm thick quartzite bed concordant to the marble.

200 Marble. 154°, 84° E

Contact with quartz feldspar gneiss is about 10 m west.

- 201 Quartz feldspar gneiss. 23° vertical
- 202 Quartzitic gneiss. A small bed (on map).
- 203 Garnet biotite gneiss. 44°, 78° NW
- 204 Marble. 50°, 85° E
- 205 Hornblende gneiss. 57°, 82° SE
- 206 Marble. 52°, 82° SE
- 207 Marble.
- 208 Marble. 62°, vertical to 85° SE
- 209 Hornblende gneiss. 41°, 85° SE

Grades into garnet quartz feldspar gneiss to north.

- 210 Garnet biotite gneiss.49°, vertical
- 211 Marble. 58°, vertical
- 212 Marble. 101°, 85° SW

Quartz stringers, pebbles and folded beds up to 2 mm thick.

213 Marble. 77°, 79° SE In-between sta 212 and 213 is a low area with no outcrops and no float but marble. To the NW it continues and I see what looks to be quartz feldspar gneiss beds.

- 214 Graphite-bearing gneiss. Sample 1MT 37
- 215 Hornblende gneiss (garnet?).29°, vertical

The sample lithology from #214 forms the northern edge and grades into the amphibolite.

- 216 Garnet biotite quartz feldspar gneiss. 55°, 85° SE
- 217 Amphibolite gneiss. 3°, 62° E
- 218 Hornblende gneiss. 54°, 85° SE

Some pyroxene gneiss float.

- Hornblende garnet quartz feldspar gneiss.35°, 79° SE
- Garnetiferous hornblende quartz feldspar gneiss.I crossed a quartzite dike (on map). There is a lot of biotite schist float.
- 221 Hornblende gneiss. 95°, 75° N

Hornblende gneiss, biotite schist, Garnet quartz feldspar gneiss. The last two Lithologies minor.

- 222 Biotite garnet quartz feldspar gneiss. Poor outcrop.
- 223 Garnet pyroxenite ? Massive outcrop, granulitic, no preferred orientation. Weathers dark brown to red.
 Sample 1MT 38
- Biotite garnet quartz feldspar gneiss.76°, 85° SE
- 225 Garnet biotite quartz feldspar gneiss

40°, 81° SE

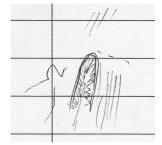
- 226 Biotite quartz feldspar gneiss.39°, 85° SE
- 227 Hornblende gneiss. 44°, 80° SE
- Hornblende gneiss (dominant).41°, vertical

Grades into: biotite quartz feldspar gneiss and quartzitic gneiss.

- Biotite quartz feldspar gneiss.38°, 85° SE
- Biotite quartz feldspar gneiss / Hornblende gneiss.
 57°, 75° SE
- 231 Quartzofeldspathic gneiss, biotite quartz feldspar gneiss, hornblende gneiss, pyroxene gneiss. A beautiful fold!

50° 83° NW	in gully
61°, 53° NW	on slope
67°, 57° NW	
38°, 78° SE	

Up the gully from #231 is a bed of dense Garnet pyroxene gneiss. It is interlayered with Garnet hornblende gneiss, Garnet quartz feldspar gneiss and Biotite schist.


It is not continuous but more like several 'boudens'. Foliation wraps around them.

This unit appears to be a continuation of the Garnet pyroxene gneiss of station #142F.

This is right at the bend in the gully.

- 232 Quartzitic gneiss. 56°, vertical
- Biotite quartz feldspar gneiss.113°, 75° NE

Grades into Hornblende gneiss.

Biotite quartz feldspar augen gneiss.3°, 61° E

It has some medium grained pegmatite veins 2 - 20 cm crossing normal to foliation.

- Quartz-bearing Marble.
 Quartz from veins 1-2 mm to beds several m.
 Much of the quartz is opaliferous and filling druzy vugs. So, although it dominates over the marble, I think it must be secondary.
- Biotite quartz feldspar gneiss.73°, vertical
- 237 Quartzitic gneiss. 51°, 70° NW

Grades into biotite quartz feldspar augen gneiss. Dips variable along strike, generally less than 70°.

Down slope about 30 m. 80° , vertical. This is variable along strike, lots of folds on the scale of 10 - 20 m.

Banded Hornblende gneiss.2°, 75° E

Layers mm's to cm's. Some augen up to 1 cm and similar style flow folds. Grades westward over 50 m to:

Garnet biotite sillimanite gneiss. Sillimanite needles felty on S1 surface. This is cross-cut by several large (~1 m) unfoliated pegmatite dikes.

Sample 1MT39

239 Garnet biotite sillimanite gneiss.5°, 85° E

Still interlayered with Hornblende gneiss. Contains garnets up to 2 cm.

- 240 Marble. 15°, 84° E
- 241 Marble. 25°, 80° SE

There are several un-mappable thin beds (1-2 \pm m) of biotite quartz feldspar gneiss on strike with the marble.

242 Biotite quartz feldspar gneiss. 17°, 85° E Augen-bearing. ~4 m bed within the marble, concordant.

243 Marble. ~97°, dip?

On the way to the top I passed alternating 4-5 m layers of quartz feldspar gneiss and marble.

- 244 Quartz feldspar gneiss, Biotite quartz feldspar gneiss, minor Hornblende quartz feldspar gneiss.
- 245 Marble.
 21°, on quartz stringer within fairly massive low outcrop.
 28°, vertical further on.
- 246 Marble. 178°, 70-85° E
- 247 Hornblende quartz feldspar gneiss. 124°, ~65° NE
- 248 Quartz feldspar gneiss. 124°, 63° SW
- Marble (contact with Biotite quartz feldspar gneiss).51°, vertical to 85° SE

In gully on the Hornblende quartz feldspar gneiss: Photo of cross-cutting pegmatite which seems to grade into the foliation farther on.

250	Marble.	
	141°, 60° NE	

Up to 10% quartz pebbles in places.

- 251 Marble. 108°, 60° N
- 252 Biotite quartz feldspar gneiss. 16°, 85° SE

Bedded with marble. Concordant. No more marble up the gully to the saddle.

- Biotite quartz feldspar gneiss.8°, 61° E
- 254 Biotite quartz feldspar gneiss. 15°, 80° E
- 255 Marble. Quartz-bearing as lenses and pebbles.
- Biotite quartz feldspar gneiss.179°, 83° E
- 257 Hornblende gneiss.Thin bed, grades into Biotite quartz feldspar gneiss. 7°, vertical.
- 258 Biotite quartz feldspar gneiss.
- Biotite quartz feldspar gneiss.10°, vertical to 80° E to 153°, 68° NE
- 260 Biotite quartz feldspar gneiss. 174°, 80° E to 155°, 70° E

Photos:

1: just up the north slope of the gully.
 2: down in the gully.

Banded Quartzofeldspathic Gneiss

Folds in Biotite Quartzofeldspathic Gneiss

- 261 Hornblende gneiss. 169°, 85° E
- 262 Marble. 175°, 70° E
- 263 Quartz feldspar gneiss and Hornblende gneiss.
- 264 Marble. 19°, near vertical
- 265 Biotite quartz feldspar gneiss. 179°, 80° E

266 Biotite-rich quartz feldspar gneiss. 108°, vertical

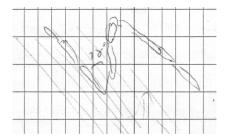
Augen bearing, banded (biotite-poor layers 5 mm - 2 cm), cross cutting pegmatite veins 1 - 2 cm.

- 267 Quartz feldspar gneiss. 177°, 65° W
- 268 Biotite quartz feldspar gneiss. 24°, 85° SE
- 269 Biotite quartz feldspar gneiss.
- 270 Marble. 177°, vertical
- 271 Biotite quartz feldspar gneiss.
- 272 Marble. 7°, vertical
- 273 Marble. 23°, 65° SE

Folded Quartzitic Gneiss within marble.

274 Biotite quartz feldspar gneiss. 5°, 65° E

- 275 Marble. 148°, 80° NE
- 276 Hornblende gneiss. 136°, 56° NE


Cut by pegmatites, both concordant and discordant, but same age.

277 Biotite quartz feldspar gneiss.145°, 52° NE

Banded in places. Biotite quartz feldspar gneiss dominant, also hornblende gneiss, quartz feldspar gneiss, and quartzitic gneiss.

This outcrop is repeated south of the valley.

I measured an S2 fold with an axis 18° left laterally to the schistocity.

278 Biotite quartz feldspar gneiss.5°, vertical to 156°, 68° NE (open fold)

Banded, contains augen, possible quartz pebbles. A 'lumpy' banded rock bedded with quartzites, hornblende garnet (pyroxene?) rock, garnet biotite gneiss beds $\frac{1}{2}$ - 1 m, except the biotite quartz feldspar gneiss which is over 2 m.

Just upside from station 278 is a large ($\sim 20 - 30$ m thick) pegmatite. Pink quartz, plagioclase, k-spar and muscovite. Shows a flow schistocity near the contact with biotite quartz feldspar gneiss. This forms prominent outcrops along the north slope of the valley.

- 279 Pegmatite.
- 280 Banded Hornblende gneiss.149°, 38° NE

Grades into biotite quartz feldspar gneiss, some quartzite.

281 Fault breccia.

Exposed in a prospect pit. Otherwise the gully marks the contact between the quartz feldspar gneiss units to the east and the marble units to the west.

- 282 Hornblende gneiss. 15°, 61° E
- 283 Hornblende gneiss. 136°, 81° NE

Biotite quartz feldspar gneiss and quartzite gneiss common, some more augen and pebble-looking stuff.

Biotite quartz feldspar gneiss.170°, 80° E

Some pyroxene garnet gneiss nearby. This is immediately upslope of the cross-cutting massive pegmatite.

285 Garnet biotite gneiss.

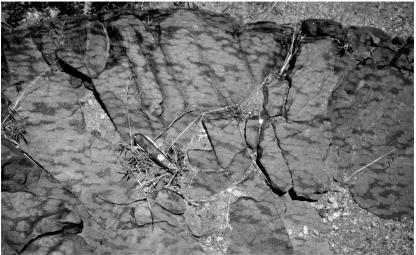
Between these two stations I passed abundant hornblende gneiss, garnet biotite gneiss and biotite quartz feldspar gneiss with mafic units dominant. This is above the eastward end of the pegmatite.

Most gneiss units continue on strike to the south side of the valley as seen from here.

Folds and mafic pods within Quartzofeldspathic Gneiss.

286 Garnet biotite quartz feldspar gneiss.13°, 72° E

- 287 Pegmatite. Cuts lithologies.
- 288 Banded Hornblende gneiss.58°, vertical
- Biotite garnet quartz feldspar gneiss.39°, 81° SE


Some Hornblende gneiss, banded.

290 Hornblende gneiss.

62°, 75° NW

- 291 Garnet biotite quartz feldspar gneiss. 12°, vertical
- 292 Garnet pyroxene granulite.Weathers dark brown and stains the soil. Low outcrop.
- 293 Garnet biotite quartz feldspar gneiss. 190°, 25° NE
- Biotite quartz feldspar gneiss.24°, 84° SE

With bands of augen quartz feldspar gneiss. This grades (?) into a strange lithology similar to 1MT39 sample. Spotted amphibolite? Brown elongate spots 1-2 cm by 3-4 cm, oval shaped. Hornblende altering to pyroxene? (prograde reaction). Forms a bed ~10 m thick concordant to other Lithologies. Sample 1MT42

Hornblende hypersthene spotted granulite.

Farther down the valley is a quartz-rich Biotite quartz feldspar gneiss.

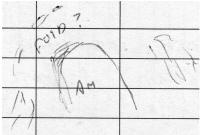
Biotite quartz feldspar gneiss.8°, 75° E

Isoclinal folds within Hornblende Gneiss.

297 Hornblende gneiss to Garnet biotite quartz feldspar gneiss. $145^{\circ}, 67^{\circ}$ NE

Pegmatite vein 20-30 cm.

- 298 Biotite quartz feldspar gneiss. 0°, 57° E?
- 299 Marble. 128°, 78° NE


Quartz pods and folded stringers within massive marble.

300 Hornblende gneiss. 101°, vertical

Grades into Garnet biotite quartz feldspar gneiss.

- Biotite quartz feldspar gneiss to Quartz feldspar gneiss.
 122°, 63° NE
- 302 Hornblende quartz feldspar gneiss.
- 303 Garnet biotite quartz feldspar gneiss.26°, 70° SE

There is an amphibolite bed ${\sim}10$ m thick that goes across to the gully on the NW.

- Hornblende garnet quartz feldspar gneiss.60°, 62° SE
- Hornblende pyroxene rock.101°, 57° SW

Not folded (as in drawing from station 303), Must be a large bouden.

- 306 Biotite quartz feldspar augen gneiss. 124°, vertical
- 307 Quartzitic gneiss in Biotite quartz feldspar gneiss. Seem concordant, but cannot tell.
- 308 As above.
- 309 Quartz feldspar gneiss. 172°, 68° NE
- Quartzitic gneiss to Biotite quartz feldspar gneiss.178°, 49° NE
- 311 Marble.163°, 53° NE
- Biotite quartz feldspar gneiss.7°, 54° E
- Biotite quartz feldspar augen gneiss.176°, 78° E
- 314 Biotite quartz feldspar gneiss. 41°, 85° E
- 315 Marble. 169°, 75° E
- 316 Marble. 178°, 64° E

Contains some diopside in places. Sample 1MT 40

317 Marble. 158°, 50° E

Contains green diopside as well.

318 Garnet biotite quartz feldspar gneiss. 171° vertical

Banded, grades into Biotite quartz feldspar gneiss, Hornblende quartz feldspar gneiss and Hornblende gneiss. Contains cross-cutting pegmatites 10 - 50 cm.

319 Marble. 127°, 61° E

Nearby is a fault zone about 1m wide exposed in a prospect pit. Slickensides indicate dip-slip movement, high angle $\sim 75^{\circ}$ to 80° .

320 Contact between Biotite quartz feldspar gneiss and Amphibolite. 81°, 85° N

This is the amphibolite (Hornblende hypersthene granulite) with the brown oval spots. It is discordant with the quartz feldspar gneiss. Could it be a diabase dike?

Biotite quartz feldspar gneiss.50°, vertical

Forms prominent pink outcrops across the slope to the west.

- Biotite quartz feldspar gneiss.43°, 78° NW
- Biotite quartz feldspar gneiss.73°, 65° NW
- 324 Quartz feldspar gneiss.
- 325 Biotite quartz feldspar gneiss. (minor Garnet biotite quartz feldspar gneiss) 84°, 69° N
- 326 Biotite quartz feldspar gneiss. 76°, vertical to 80° N
- 327 Marble. 101°, 53° N

West slope into dry hollow is forested and I cannot trace this. On the ridge north of the marble are: Biotite quartz feldspar gneiss Hornblende quartz feldspar gneiss Hornblende gneiss Biotite garnet schist Garnet quartz feldspar gneiss All Lithologies seen in float.

- 328 No rocks, just a beautiful corralled-in spring.
- 329 Biotite quartz feldspar gneiss and some Hornblende gneiss. 64°, 80° NW

Cut by numerous thin (5 mm to 10 cm) apatite veins.

- 330 Marble. 105°, vertical
- Biotite quartz feldspar gneiss.83°, 83° N

Just passed a bed of massive amphibolite between this station and the marble.

- Biotite quartz feldspar gneiss to Quartzitic gneiss and Biotite garnet quartz feldspar gneiss.
 85°, 85° N
- 333 Garnet biotite quartz feldspar gneiss.

133°, vertical

With a 10-15 m bed of hornblende pyroxene granulite.

- Marble.134°, 78° NE to 57° NE (as seen from across gulch).
- 335 Biotite quartz feldspar gneiss.
- 336 Biotite quartz feldspar gneiss.
- 337 Marble.
- Biotite quartz feldspar gneiss.48°, vertical
- Biotite quartz feldspar gneiss.48°, vertical
- 340 Marble. 75°, 84° NW
- 341 Marble.
- 342 Biotite quartz feldspar augen gneiss. 107°-113°, 75° NE
- Biotite quartz feldspar gneiss.73°, 60° NW
- Biotite quartz feldspar gneiss.172°, 52° E
- 345 Hornblende gneiss. 25°, 40° SE
- 346 Hornblende gneiss. 175°, 55° E
- 347 Garnet hypersthene granulite. There is a biotite-rich (large blocks) pegmatite that runs into and stops at the granulite. It is within a hornblende rock.
- 348 Garnet biotite quartz feldspar gneiss. 160°, 60° E
- 349 Garnet quartz feldspar gneiss. $\sim 40^{\circ}$, ?

- 350 Hornblende gneiss. An upland area of sparse outcrop.
- 351 Diopside (?) garnet quartz feldspar gneiss.111°, 64° NE
- 352 Marble. 66°, vertical
- Biotite quartz feldspar gneiss.119°, 45° NE
- 354 Biotite quartz feldspar gneiss. 50°, 55° NW
- Biotite quartz feldspar gneiss.109°, 60° NE
- 356 Marble. (quartz-bearing) 158°, 48° NE
- 357 Biotite quartz feldspar gneiss. 140°, 50° NE
- 358 Marble. 168°, vertical
- 359 Marble / Quartz feldspar gneiss contact.Seems to be folded, goes every which way, impossible to map.
- Biotite quartz feldspar gneiss.
 ~2°, vertical
- 361 Biotite-rich garnet quartz feldspar gneiss. Quartz pebbles. I am sure.Sample 1MT43

Between stations 361 and 362, Sillimanite schist. Sample 1MT41

- Biotite quartz feldspar gneiss.46°, near vertical
- 363 Biotite quartz feldspar gneiss.146°, 52° NE
- 364 Biotite garnet quartz feldspar gneiss.

- 365 Marble. 97°, dip?
- 366 Garnet quartz feldspar gneiss.
- 367 Marble 134°, 57° NE
- 368 Garnet biotite quartz feldspar gneiss. 141°, 81° NE
- 369 marble.178°, variable, near vertical
- Garnet quartz feldspar gneiss.76°, ~60° N
- Biotite quartz feldspar gneiss.173°, 67° W
- Biotite quartz feldspar gneiss.~120°, 65° NE

Cut by minor pegmatite. ~20 cm max thickness. The marble dies out past the saddle.

- 373 Marble.~45°, 50° SE
- Garnet biotite quartz feldspar gneiss.55°, 70° NW

Biotite-rich layers Garnet-rich layers Biotite garnet layers Amphibolite up the gully to northeast.

- 375 Marble. 74°, vertical
- 376 Biotite garnet quartz feldspar gneiss.
- Garnet biotite gneiss, Biotite quartz feldspar gneiss, Garnet pyroxene gneiss, and Hornblende gneiss.
 93°, 57° S
- 378 Hornblende gneiss (amphibolite) and Hornblende garnet gneiss.

- 379 Marble.33°, 55° SE
- 380 Marble.22°, 65° SE
- 381 Biotite quartz feldspar gneiss. Garnet-bearing. This can be seen to connect with the quartz feldspar gneiss across the valley. There is a fold.

- 382 Marble.
- 383 Amphibolite.Some garnet-bearing layers.
- 384 Biotite quartz feldspar gneiss.
- Biotite quartz feldspar gneiss.
 Large outcrop just beyond the Kephart house. This outcrop contains numerous folds and amphibolite lenses, pods, boudens and a layer ~1/2 m thick.
 In addition there is a meta-conglomerate layer ~20 cm thick.
- 386 Marble.
- 387 Amphibolite gneiss.66°, 80° NW
- 388 Marble.106°, 69° NE
- 389 Marble.92°, 80° N
- 390 Amphibolite.97°, vertical

391	Marble. 111°, 76° NE
392	Amphibolite. 97°, 62° N
	There are minor beds of Biotite quartz feldspar gneiss.
393	Amphibolite. 84°, 80° N
394	Garnet quartz feldspar gneiss.
395	Hornblende gneiss. ('salt and pepper' amphibolite) 70°, 65° SE
396	Hornblende gneiss, as above. 83°, 85° SE
397	Amphibolite. 94°, 79° S
398	Quartzitic gneiss. 87°, 85° S
399	Amphibolite. 61°, 84° SE
400	Amphibolite. 79°, vertical
401	Hornblende gneiss. 123°, 75° NE
402	Marble. 97°, near vertical to slightly N
403	Marble. 94°, 85° S to 83°, vertical
404	Amphibolite.
405	Marble. 67°, 80° N
406	Marble. 92°, 85° N

- 407 Marble.With pods (up to 15x25 cm) and lenses of Hornblende hypersthene garnet granulite.
- 408 Marble. 66°, vertical
- 409 Marble. 95°, 87° N
- 410 Hornblende gneiss. 7°, 80° E
- 411 Hornblende gneiss. 33°, 72° SE to vertical
- 412 biotite quartz feldspar gneiss.47°, 64° SE

Minor unit within amphibolite.

- 413 Amphibolite. 60°, 65° SE
- 414 Hornblende gneiss. 87°, 80° N
- 415 Amphibolite. 88°, vertical
- 416 Biotite quartz feldspar gneiss. 45°, 73° N
- 417 Hornblende gneiss. 96°, 57° N

Grades into Biotite quartz feldspar gneiss down slope about a 100 m down the gully.

Biotite quartz feldspar gneiss 31°, 69° SE

Folded and locally anatectic (pegmatite veins leading off from quartzofeldspathic layers).

418 Hornblende gneiss. 68, 61° NW Hornblende gneiss grades into quartz feldspar gneiss and quartzite and then to a pyroxene granulite.

Hornblende Gneiss/Quartzofeldspathic Gneiss/Quartzitic Gneiss gradational contact.

419 Marble and quartzite. 43°, 81° SE

These are mixed and interlayered intimately. Bed, \sim 30 m thick, continues on strike west crossing the valley to Dick Berg's mapping. Some shear planes serpentinized and minor calc-silicate minerals in the marble. Grades into a thin (1-2 m) Sillimanite schist, then to hornblende gneiss, Biotite garnet quartz feldspar gneiss.

420 Hornblende gneiss – Garnet hornblende gneiss. Intermixed with thin layers of quartzite. Some meta-conglomerate, nice in float but not well exposed on outcrop.

Meta Conglomerate (?) within Hornblende Gneiss.

Sample 1MT44

Minor Sillimanite schist, ~ $\frac{1}{2}$ m.

- 421 Marble. 21°, 76° SE
- 422 Biotite garnet gneiss. 170°, 71° E
- 423 Banded amphibolite. 3°, 56° E

Some meta-conglomerate in outcrop.

- 424 Biotite garnet augen gneiss. 8°, 79° E
- 425 Banded amphibolite. 76°, near vertical
- 426 Biotite garnet quartz feldspar gneiss. ~53°, 85° SE

Fairly massive and rubbly.

427 Banded hornblende gneiss. 64°, 74° NW

Foliation crenulated by second deformation.

DIZATZON CAENMATED AT2120 GN 10

- 428 Hornblende gneiss. 77°, 73° NW
- 429 Amphibolite. 66°, 80° NW
- 430 Amphibolite. 53°, 72° NW
- 431 Marble and Quartzitic gneiss. 74°, 68° N
- 432 Amphibolite. 95°, 80° S
- 433 Tertiary volcanic plug.
- 434 Marble. 91° near vertical
- Biotite quartz feldspar augen gneiss.97°, 65° S
- 436 Hornblende pyroxene granulite to Amphibolite. 57°, 73° SE
- 437 Hornblende augen gneiss. 63°, 80° SE
- 438 Biotite garnet gneiss 11°, vertical
- Biotite quartz feldspar gneiss.31°, 79° SE
- 440 Hornblende gneiss. 46°, 79° SE
- 441 Pyroxene granulite. 39°, 68° SE

Grades to Biotite garnet quartz feldspar gneiss.

- 442 Marble. 47°, 81° SE
- 443 Hornblende gneiss. 42°, 78° SE
- 444 Marble. 14°, 81° E
- 445 Biotite garnet quartz feldspar gneiss. 72°, near vertical

A thin bed (1-2 m) of pyroxene granulite.

- 446 Banded hornblende gneiss. 72°, 76° NW
- 447 Garnet anthophyllite gneiss. 43°, 76° SE
- 448 Garnet biotite schist. 47°, 76° SE
- 449 Marble. 29°, 81° SE

8 October, 1979.

Met the Kepharts family, good people. Talked about geology for a while.

The outcrop from which sample #13 came is mostly augen biotite quartz feldspar gneiss with boudens, pods and stringers of amphibolite. An amphibolite cuts across the foliation then runs parallel to it, about $\frac{1}{2}$ m wide. Many isoclinal folds in biotite quartz feldspar gneiss, lots of Hornblende near the contact with the amphibolite layer, almost gradational. Migmatite are with amphibolite surrounded by pegmatite derived by anatexis. Lots of pegmatite in the area. Some show foliation veins parallel and cross cut bedding, of local derivation. On the slope above this is a ~3 m bed of hornblende pyroxene granulite, locally spotted. It is concordant. I trace it more or less for about 200 m until it goes into the valley.

450 Beds: Hornblende pyroxene granulite (4m), Biotite quartz feldspar gneiss 0.5-1m) and Marble (0-1.5m).

The granulite is parallel to foliation in general, but locally discordant. Although the pyroxene granulite in discordant, the foliation is parallel so injected before deformation. Everything is folded in one place on a scale of ¹/₂ meter before continuing parallel again.

- 451 Biotite quartz feldspar gneiss. On top of a bold outcrop above the house. Minot beds ¹/₂ to 2 m of hornblende gneiss and hornblende gneiss float, but mostly biotite quartz feldspar gneiss.
- 452 Hornblende gneiss. 10m bed within quartz feldspar gneiss.
- 453 Marble.

Low marble outcrop.

Mostly Biotite quartz feldspar gneiss and quartz feldspar gneiss. Thin hornblende gneiss separates the Marble from the Quartz feldspar gneisses.

454 Quartz feldspar gneiss.

I passed an amphibolite bed 10-20 m thick on the saddle. I am checking the Hornblende gneiss / Quartz feldspar gneiss contact.

455 Hornblende gneiss / Quartz feldspar gneiss contact. Outcrop not so great here. The Biotite quartz feldspar gneiss contains thin beds of hornblende gneiss but the Lithologies are 'interbedded' so no contact exists as such. The slope down into Dry Hollow is covered with trees, no outcrop or even float.

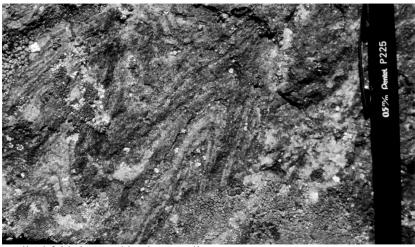
There is Marble just below as you get into the trees.

456 Calc-silicate marble. Sample 1MT45 Green stain on sample. 457 Marble. 92°, 81° N

Lots of Paleozoic limestone float falling in from above.

458 Amphibolite. 77°, 80° N

Foliated and with an occasional stringer or bleb of quartz, otherwise $\sim 60\%$ hornblende and 40% plagioclase. There is a quartz bed uncertain thickness next to the amphibolite.


459 Marble. 89°, 85° S

Well foliated.

460 Amphibolite, Hornblende pyroxene gneiss, some Quartzitic gneiss. 90°, near vertical

I passed some minor quartz feldspar gneiss just after the marble.

461 Iron formation.

Isoclinal folds in Hornblende Granulite.

Banded Iron formation Kelly area.

462 Biotite-rich quartz feldspar gneiss. 96°, 69° S

Pegmatites common.

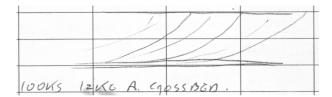
463 Quartz gneiss. 105°, 87° N

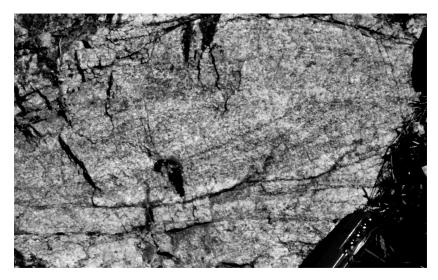
This is a bed within the Hornblende gneiss suite.

464 Marble.With quartz blebs and stringers, medium grained.

Sample 1MT46

Blue/black flint occurs within the marble. I also took a sample of a Sillimanite garnet biotite schist float.


465 Banded quartz gneiss, quartz feldspar gneiss and Sillimanite garnet schist. 151°, 68° NE


All banded, quartz dominant.

466 Biotite quartz feldspar gneiss.9°, 85° E

Weathers tan to pink.

467 Biotite quartz feldspar gneiss.Gray, nearly massive. Possible truncated foliation, looks like a crossbed.

468 Pink Biotite quartz feldspar gneiss.0°, 50° E

Minor amphibolite float.

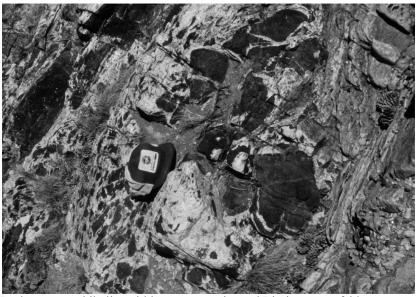
- 469 Hornblende gneiss bed \sim 3-4 m thick. 8°, 75° E
- 470 Biotite quartz feldspar gneiss. 3°, 46°E

Minor amounts of hornblende gneiss and amphibolite and one hornblende pyroxene granulite in float.

- 471 Banded hornblende gneiss. ~10-20 m thick. Folded and deformed.
- 472 Pegmatite. Also biotite quartz feldspar gneiss. Passed a fair amount of hornblende gneiss float.
- 473 Hornblende gneiss. 19°, 58° E

One bed uncertain thickness. Passed mostly biotite quartz feldspar gneiss float.

474 Biotite quartz feldspar gneiss.136°, 34° NE


Gray-pink. Some cross cutting pegmatite ~1 cm. Bands of biotite quartz feldspar gneiss and pink quartz feldspar gneiss. The biotite-poor bands seem less foliated. Anatectic?

I passed a bed ~ 1 m of hornblende gneiss on the way.

- 475 Amphibolite.Strike and dip range from N/S to E/W. Bed 10020 m.
- 476 Amphibolite. Seems to be a continuation of the bed in station 475.
- 477 Biotite quartz feldspar gneiss.27°, 53° E

I passed in the gully several beds of hornblende gneiss and amphibolite. Concordant and gradational to the dominant biotite quartz feldspar gneiss. Beds $\frac{1}{2}$ m to 3 m thick.

Several pegmatite dikes $\sim 1/2 - 1$ m thick trending $\sim 120^{\circ}$, 80° SW.

Broken up amphibolite within Quartz gneiss and Biotite quartz feldspar gneiss.

478 Biotite quartz feldspar gneiss.

120°, 56° NE

- 479 Biotite quartz feldspar gneiss. 102°, 34° N
- 480 Marble. 114°, 85° S
- 481 Biotite quartz feldspar gneiss. 94°, 24° N

Pink to gray. Minor amphibolite float and pegmatite.

482 Biotite quartz feldspar gneiss. 94°, 56° N

Also has similar isoclinal folds. D2 fold axis trends 94° and plunges 34° E.

- 483 Marble. 62°, vertical
- 484 Biotite-poor quartz feldspar gneiss. 78°, 79° N
- 485 Biotite quartz feldspar gneiss. 87°, 51° N
- 486 Quartz feldspar gneiss. \sim 3°, 86° E

There is a fair amount of hornblende gneiss and amphibolite after the last station, then just quartz feldspar gneiss. Marble begins just after this station.

487 Marble. 50°, 85° NW

Lots of Tertiary volcanics float.

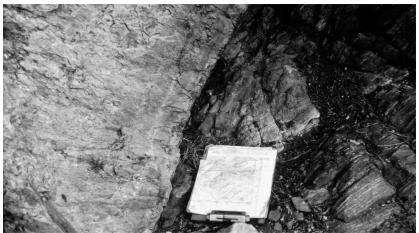
488 Marble. 106°, 75° S 489 Marble.90° vertical (axial plane of fold)

A broad open fold \sim 10-20 m.

Sample 1MT47

490 Marble. 75°, 85° S

Some blebs of quartz. There is a Quartz / Chert bed ${\sim}10$ m thick and concordant to foliation and bedding.


491 Marble. 58°, 78° S

Several chert beds $(\sim 3m)$ and much float.

- 492 Quartz feldspar gneiss. 100°, 75° N
- 493 Biotite quartz feldspar gneiss.27°, 75° NW

Some hornblende gneiss float.

494 Biotite quartz feldspar gneiss and hornblende gneiss.

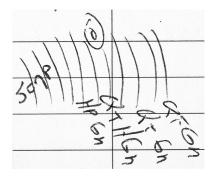
Cross-cutting Pegmatite in Hornblende gneiss.

Isoclinal folds in Hornblende Gneiss.

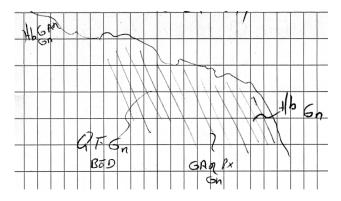
Banded Biotite Quartzofeldspathic Gneiss.

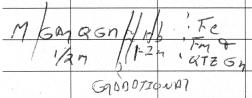
- 495 Meta-conglomerate and Quartz feldspar gneiss.
- 496 Hornblende gneiss, Quartz gneiss contact.
- 497 Meta-conglomerate in Garnet quartzitic gneiss.

498 Hornblende gneiss.


Bed ~ 10 m with Hornblende gneiss, garnets 2-5 mm, up to 30%, biotite 0-10%, quartz lenses and pods and possible meta-conglomerate.

499 Quartzitic gneiss.


Large pegmatite vein cross-cutting outcrop.

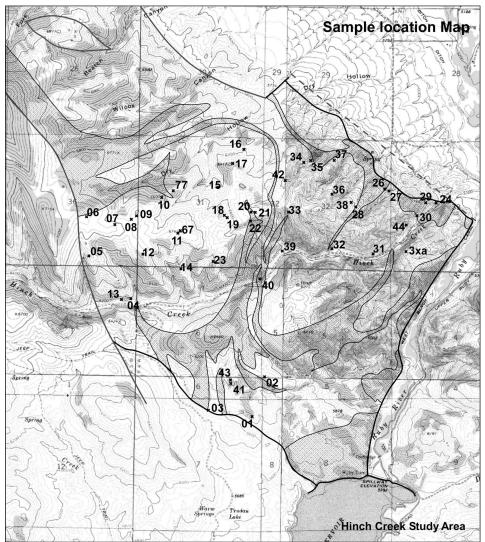

- 500 Marble and pegmatite.
- 501 Streaky garnet hornblende gneiss.
- 502 Hornblende pyroxene granulite contact with Ultramafic body. Soil is dark, weathers low and crops out poorly. Badly serpentinized.

503 Hornblende gneiss to Quartz feldspar gneiss. This outcrop grades from hornblende gneiss to quartz feldspar gneiss and back again as shown in sketch. The quartz feldspar gneiss is possibly metaconglomeritic and has thin lenses of quartzite ~1 cm. Anatexis with pegmatite forming.

- 504 Mafic and quartzitic gneiss. On the slope I am in mostly mafic and quartzitic gneiss Lithologies, minor to no quartz feldspar gneiss even though such Lithologies are visible across the valley and striking in my direction.
- 505 Banded hornblende gneiss to Biotite quartz feldspar gneiss.

Banded hornblende gneiss grades to right (in sketch) into Garnet quartzitic gneiss, iron-bearing.

Iron formation – gradational contact to bed ~20 m thick with ~50-60% magnetite.



Structural folding in hornblende gneiss.

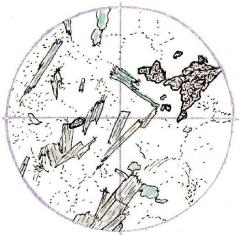
- 506 Partial melting in Quartz feldspar gneiss.
- 507 Hornblende gneiss, Biotite garnet schist contact.
- 508 Hornblende gneiss with meta-conglomerate.
- 509 Quartzitic gneiss with quartzite lenses but mostly feldspathic. Garnets exist but not abundant.

Appendix 4: Samples by Station number

Sample			Statio	n
1MT	1	/	1	KS78
1MT	2 - 2A	/	4	KS78
1MT	3	,	60	KS78
1MT	5	/	64	KS78
1MT	6	/	67	KS78
1MT	° 7	/	69	KS78
1MT	8	/	70	KS78
1MT	9	/	72	KS78
1MT	10	/	74	KS78
1MT	11	/	81	KS78
1MT	12	/	83	KS78
1MT	13A-F	/	87	KS78
1MT	14	/	90	KS78
1MT	15A-B	/	96	KS78
1MT	16	/	102	KS78
1MT	17	/	103	KS78
1MT	18A-B	/	107	KS78
1MT	19	/	108	KS78
1MT	20	/	109	KS78
1MT	21	/	111	KS78
1MT	22	/	112	KS78
1MT	23	/	116	KS78
1MT	24A	/	118	KS78
1MT	25	/	122	KS78
1MT	26	/	125	KS78
1MT	27 - 27B	/	126	KS78
1MT	28A-B	/	131	KS78
1MT	29	/	141	KS78
1MT	30A-F	/	142	KS78
1MT	31	/	147	KS78
1MT	32	/	151	KS78
1MT	33	/	156	KS78
1MT	34	/	162	KS78
1MT	35	/	163	KS78
1MT	36	/	172	KS78
1MT	37	/	214	KS78
1MT	38	/	223	KS78
1MT	39	/	238	KS78
1MT	40	/	316	KS78
1MT	41	/	361	KS78
1MT	42	/	294	KS78
1MT	43	/	361	KS78
1MT	44	/	420	KS78

https://www.lessmiths.com/~kjsmith/msthesis/c3samples.shtml

Appendix 6: General mineral formulae:


Biotite:	K(Mg,Fe++)3AlSi3O10(F,OH)2
Phlogopite:	KMg3AlSi3O10(F,OH)2
Hornblende:	(Ca,Na)2-3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2
Tremolite:	Ca2(Mg5.0-4.5Fe2+0.0-0.5)Si8O22(OH)2
Muscovite:	KAl2(AlSi3O10)(F,OH)2, or (KF)2(Al2O3)3(SiO2)6(H2O)
Calcite:	(CaCO3)
Dolomite:	CaMg(CO3)2
Almandine:	Fe3Al2(SiO4)3
Plagioclase:	NaAlSi3O8 to CaAl2Si2O8)
Microcline:	(KAlSi3O8)
Diopside:	MgCaSi2O6
Hypersthene:	(Mg,Fe)SiO3
Chlorite:	(Mg,Fe++,Fe+++,Al)6(Si,Al)4O10(OH)8
Sillimanite:	Al2SiO5
Ilmenite:	FeTiO2
Hematite:	Fe+++2O3
Magnetite:	Fe3O4
Anthophyllite:	(Mg,Fe++)7Si8O22(OH,F)2
Cortierite:	(Mg,Fe++)2Al4Si5O18 usually Mg>Fe

Appendix 7: Petrographic Sample Analyses.

Sample: 1MT01 / 1KS78

Hand Specimen:	Biotite-Bearing Quartzofeldspathic Gneiss
Grain Size:	0.1 - 3 mm
Color:	Pink
Texture:	Banded (~1-2mm think), light pink and white layers
	alternating with dark. Garnet bearing.
Mineral %:	Biotite %
	K-spar
	Garnet

Thin Section:

Drawing:		and the manual and the second s
Mineral	%	Properties:
Biotite	5	Yellow/green (n/s), Black (e/w). Defines the foliation.
Microcline	30	Gridiron twinning.
Plagioclase	14	An25. Albite twinning. Some sericite alteration.
Sericite	11	-
Quartz	40	Strain shadows.
Garnet	tr	Isotropic, pale pink color, severly embayed.
Zircon	tr	High $\gamma - \alpha$.
Mymerkite	tr	
Apatite	tr	Grey, low $\gamma - \alpha$, hexagonal end section.
-		

Texture: Fine grained, >1mm av. Foliated as defined by orientation of groups and bands of biotite crystals. Several garnets are present and are deeply embayed with inclusions of quartz, feldspar, and biotite. Plagioclase is myrmekitelly ingrown with quartz and there is much sericite alteration in it. Microcline is dominant and shows strong gridiron twinning.

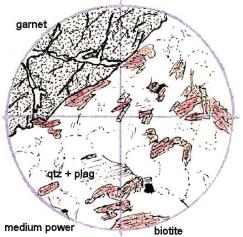
Facies (equilibrium assemblage):

Biotite-Microcline-Plagioclase (An 25)

Sample: 1MT02 / 04KS78

Sample: INITU.		
Hand Specimen		Quartzofeldspathic Gneiss
Grain Size:		1-5 mm
Color:		Grey/Pink
Texture:		Massive, coarse grained. Granular grains equigranular
		and there is little size variation. The rock weathers to
		pink.
Mineral %:		K-spar 60%
		Quartz 40
		Garnet 1
Thin Section:		
Drawing:		
Mineral	%	Properties:
Quartz	35	Strained, seriate size range, larger grains tend to be
		ameboid, replacing other grains.
Microcline	30	Gridiron twins, perthite common and some grains have
		exolved the albite to the grain boundary.
Plagioclase	35	Anorthite. Albite twinning present, extensive sericite
C		alteration.
Sericite	2	Alteration in plagioclase.
Almandine	1	Small broken garnet grains, slightly pinkish.
Zircon	tr	high birefringence, Z ^C parallel, uniaxial (+).
Hematite	tr	Bright red in reflected light. Grains interstitial to quartz
		grains.
		<i>B</i>
Texture:	Seriat	e grain size, especially in the quartz and k-spar. The grain

Texture: Seriate grain size, especially in the quartz and k-spar. The grain boundaries are irregular. Quartz grains tend to be ameboid, growing into surrounding grains, mostly k-spar as it is the most abundant mineral. K-spar is dominantly microcline but perthite is common. Albite has been exolved to the edges of many grains. Plagioclase is also present, generally as smaller grains and contains sericite. Garnet grains are small (0.5-1mm), rounded and fractured. A few are poikilitec but not commonly.


Facies (equilibrium assemblage):

Quartz-Microcline-Plagioclase-Garnet

Sample: 1MT03 / 60KS78

Sumplet Inti too / oo			
Hand Specimen:	Garnet Biotite	Quartz Feldspar Gneiss	
Grain Size:	0.5 - 10 mm	-	
Color:	Grey/pink		
Texture:	Fine to very	coarse grained, banded with thin layers	
	quartz plus fel round 2-10mm	stly biotite and thick layers (5-15mm) of dspar and garnet. The garnets are pink and n in diameter. This contains a lens about	
	2cm thick of quartz \pm feldspar with minor garnet.		
Mineral %:	Quartz	20%	
	Plagioclase	40	
	Biotite	20	
	Garnet	20	

Thin Section:

Drawing:	
Mineral	
Quartz	
Plagioclase	
K-spar	
-	

- % Properties:
- 30 Strain shadows. Forms larger crystals.
- ase 39 Relief slightly higher that for quartz, no sericite alteration.
- 1 Very low relief (<plag) and small grains, interstitial to most others. Some gridiron twinning.
- Garnet Biotite
- 10 Large grains ~1-5mm, well formed, slightly poikilitic.
- 20 Very pale to dark red, orientation defines the foliation. In equilibrium with garnet.
- Zircon tr High $\gamma \alpha$ and forms halos in biotite.
- Hematite tr Red in reflected light.
- Texture: Seriate grain sizes with garnet porphoryoblasts. Garnets are well formed and somewhat poikiletic. The biotite crystals bend around and are partially included in some garnets. Biotite defines the foliation. Quartz grains are larget usually and the edges are somewhat lobate, but not commonly so. Plagioclase grains are smaller on the

average. The quartz/plagioclase grains are subrounded, seriate,

and granulitic. Some of the boundaries around the plagioclase are accented wioth biotite (?).

K-spar grains are very small and always interstitial between the quartz and plagioclase.

Facies (equilibrium assemblage):

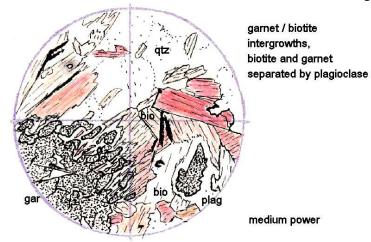
Garnet-Biotite-K-spar-Plagioclase-Quartz

Sample: 1MT3XA / 60KS78

Sample. INT 52		11.570			
Hand Specimen:		Garnet, Ortho-Py	roxene,	Quartz, Anthophylite Gneiss	
Grain Size:		0.1-2mm			
Color:		Brownish-purpli	sh		
Texture:		Foliated due to e	Foliated due to elongation of brown? Amphibole. A very		
	hard rock, was difficult to break a piece off the outcrop		break a piece off the outcrop.		
Mineral %:		Anthophylite	55%	(MgFe++)7Si8O22(OH,F)2	
		Quartz	25	SiO2	
		Enstatite	10	MgSiO3	
		Garnet	10	Fe++3Al2Si3O12	
Thin Section:					
Drawing:					
Mineral	%	Properties:			
Quartz	25	Strained, contains i	inclusion	s, generally surrounds garnet.	
Garnet	10	Pinkish, poikiobla	astic, irr	egular outline and elongate	
		parallel to foliation	l .		
Anthophylite	55	2V~90°(+), RI~1.	6-1.7, γ-1	tan, $\alpha+\beta$ colorless. $\gamma-\alpha$ 0.022	
		Z^C0°, gives flash	figure. A	mphibole cleavage.	
Rutile	tr	Deep red, high reli	ef, parallo	el extention.	
Biotite	tr	Yellow-red/brow	n.		
Enstatite	10	RI~1.7-1.75, 2Vhi	gh. Skel	etal poikioblastic crystals, $\gamma - \alpha$	
		0.013, Z^C paralle	Ī.	-	
Cordierite?		-			

Texture: Moderate grain size, foliated as defined by anthophyllite and strings of quartz grains. Garnet grains are sieve textured with the inclusions weakly to strongly defining the foliation. The garnets themselves are irregular in outline and elongate parallel to foliation. They are for the most part separated from the anthophyllite by quartz growing in a poikioblastic skeletal pattern. The inclusions are quartz for the most part although it seems to be attacking the anthophyllite. I see no plagioclase anywhere.

Facies (equilibrium assemblage):


Quartz-Garnet-Anthophyllite-Enstatite?

1Sample: 1MT04 / 62KS78

1			
Hand Specimen:	Garnet-bearing E	Biotite Quartz-Feldspar Gneiss	
Grain Size:	0.5 – 1 mm, auge	en to 15mm.	
Color:	Black with crean	n colored augen (plag)	
Texture:	Foliated, defined by orientation of elongated quartz		
	grains and biotite	grains. It is garnet bearing and also has	
	large (1.5cm) aug	gen of plagioclase. Garnets 3-7mm.	
Mineral %:	Quartz	40%	
	Plagioclase	45	
	Garnet	3-5 pink	
	Biotite	10	

Thin Section:

Drawing:

Mineral	%	Properties:
Quartz	35	Elongate parallel to foliation with strain shadows.
Plagioclase	40	An. 2V~80°, Much alteration (to 10%) to sericite.
Sericite	/	Alteration in plagioclase.
Garnet	5	Pinkish, isotropic, poikiolitic.
Biotite	20	Biotite altering to chlorite. Also, biotite is interfingering
		into garnet, but is everywhere separate from garnet by a
		rim of plagioclase.
Zircon	tr	Halos in biotite. High $\gamma - \alpha$.
Chlorite	tr	Secondary alteration in biotite.
Magnetite	tr	Skeletal grains between biotite.
Muscovite	tr	Clear, micaceous, variable relief.
_		
Continues	Mad	iven to find anoined conjete size distribution of avents and

Texture: Medium to fine grained, seriate size distribution of quartz and plagioclase. Quartz forms elongate crystals and interlocking aggregate layers parallel to foliation. It is mostly strained. Plagioclase is highly sericitically altered in places, especially in the pods of plagioclase crystals. Pods, or lenses stretched out parallel to foliation.

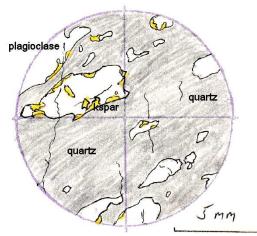
The reaction Biotite -> Plagioclase + Garnet (Alm) is evidenced by intergrowths of garnet and biotite where they are separated by plagioclase, see drawing.

In a few places the biotite seems to be altering to chlorite, perhaps chlorite + muscovite (to account for the potassium).

Facies (equilibrium assemblage): Garnet-Quartz-Plagioclase

Sample: 1MT05A / 64KS78 Hand Specimen: Quartzofeldspathic Gneiss Grain Size: $1 - 5 \, \text{mm}$ Color: Pink Texture: Foliated as defined by elongation of quartz and feldspar grains, also somewhat layered in quartz/plagioclase rich and k-spar rich bands 3-10mm thick. K-spar also forms pods or lenses that pinch out. Also defining the foliation are layers 1-2mm thick of fine grained garnet. Mineral %: 40% K-spar Plagioclase 40 Quartz 20 Garnet 1-2 Thin Section: Drawing: Mineral % Properties: Microcline 50 Gridiron twins, subgrain development? Plagioclase 45 Anorthite. Albite twins, sericite alteration. Ouartz 5 Strain shadows. Garnet 1 Pink to red (in dissecting microscope) Sericite \ 17 Alteration in plagioclase. In some places it has grown into large enough crystals to be seen as muscovite. Muscovite/ Alteration in plagioclase. tr Biotite Black mica associated with garnet seen in the dissecting tr microscope. Texture: Quartz grains are the largest and are elongate parallel to the

Texture: Quartz grains are the largest and are elongate parallel to the foliation. They often enclose grains of feldspar. Strain shadows are commonly oriented parallel to the foliationas well. Microcline grains are smaller, seriate sizes and are fractured forming smaller grains under the stress. Plagioclase crystals are easily defined by the sericite alteration and plagioclase twinning in some of them. No garnet is present in the thin section.


Facies (equilibrium assemblage):

Quartz-Plagioclase-K-spar. Garnet, Biotite

Sample: 1MT05B / 64KS78

Hand Specimen:	Plagioclase-bea	aring Quartzite
Grain Size:	1-8 mm	5
Color:	Grey	
Texture:	parallel to foli plagioclase "fl associated w	coarse grains of quartz and plagioclase ation. Quartz dominates and the grains of oat" in a quartz matrix. K-spar in minor, ith the plagioclase, often on the ase grain boundary and extending into the in.
Mineral %:	Qtz	70%
	Plagioclase	25
	K-spar	3-5

Thin Section:

D	
1)ra	wing:
Dia	•• III <u>5</u> .

Etched and stained slab under reflected light. K-spar-yellow, plagioclase – white, quartz – grey.

Mineral % Properties	Mineral	%	Properties:

- Quartz 70 Large grains growing around and enclosing all others, ameboidal shaped.
- Plag (An) 25 Largely sericitally altered.
- Muscovite\ 5 Secondary growth in plagioclase. Sericite /
- K-spar 1 Very small grains of microcline associated with plagioclase.
- Texture: This rock is dominated by very large ameboidal, strained grains of quartz surrounding sercitically altered grains of plagioclase. The alteration is extensive and there are fairly large grains of muscovite associated with the sericite. Along the edges but growing into the plagioclase are small grains of microcline, irregularly shaped.

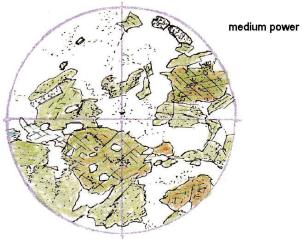
Facies (equilibrium assemblage):

Sample: 1MT05C / 64KS78

Sample: INTI05		
Hand Specimen:		Biotite Plagioclase Gneiss
Grain Size:		0.1 - 3 mm, Garnets up to 7-8mm
Color:		Grey
Texture:		Foliation defined by orientation of biotite, and by slight compositional layering. Medium to fine grained with a few garnet porphyroblasts. Grains are rounded and mostly around the same size.
Mineral %:		Biotite 25% Quartz \ 70 Plagioclase /
		K-spar 1-2
		Garnet 5
Thin Section:	0 (
Mineral	%	Properties:
Biotite	20	Tan to red/brown. Seems to be altered in places parallel to C-axis and not pleochroic. Altered biotite is associated with a band of altered plagioclase.
Plagioclase	75	An20. $2V \sim 80^{\circ}$, RI ~ 1.54 . Fairly extensively (to 10%) altered to sericite.
Sericite	/	Alteration in plagioclase.
Quartz	1	Strain shadows. These grains are very small and can be seen most easily by their similar relief and cleaner "look" than plagioclase.
Garnet	1-2	Does not seem to be in equilibrium with biotite. See 1MT04. Pink in hand specimen.
Zircon	tr	
Apatite	tr	
Hematite	tr	
Chlorite	3	Secondary alteration in biotite, associated with extensive sericitization in plagioclase.
K-spar	tr	Visible in stained slab, but I do not recognize it in thin section.
Texture:	Plagio equili parall	prately fine grained and foliated as defined by biotite. boclase equigranular and rounded. Biotite is not in brium with garnet. Some alteration is present in a layer let to foliation causing secondary alterations in biotite and boclase.

Facies (equilibrium assemblage): Biotite-Plagioclase-Quartz-Ksapr(?)

Sample: 1MT06A / 67KS78


Sample: IMT06	A / 6 71	KS78
Hand Specimen:		Amphibolite
Grain Size:		1-3mm
Color:		Black
Texture:		A weak foliation defined by the streaked orientation of
		felsic areas.
Mineral %:		Hornblende 50%
		Plagioclase 50
		Quartz /
Thin Section:	(lost)	
Drawing:	(lost)	
Mineral	%	Properties:
Hornblende	60	Olive green / pale green / dark green.
Garnet	2	Seive textured with plagioclase.
Plagioclase	20	(An) Sericitically altered.
Sericite	13	Fairly extensive, complete in some parts of the slide, nearly
Serience	15	absent in another.
Quartz	5	
Apatite	tr	
Magnetite	tr	Confined to hornblende-rich areas.
Texture:	Layer	ed (1-4mm) no preferred orientation among the grains
	withir	1 each layer. The hornblende is irregularily shaped and
	larger	grains are somewhat poikioblastic. Felsic grains are
	equig	ranular and triple junctions commonly meet at 120°. The
	garnet	ts are poorly formed and poikioblastic, inclusions commonly
	slight	ly oriented.

Facies (equilibrium assemblage): Hornblende-Plagioclase-Garnet

Sample: 1MT06 / 67KS78

Sumplet million of	11010		
Hand Specimen:	Banded Amph	ibolite	
Grain Size:	0.1-0.5mm		
Color:	Black, streaked	d with white.	
Texture:	contains streal garnet (minor amounts. Plagi k-spar. Plagioo	Foliated, defined by hornblende, may be lineated. Also contains streaked out plagioclase grains and some pink garnet (minor). Quartz in present, perhaps in minor amounts. Plagioclase staining shows up trace amounts of k-spar. Plagioclase plus quartz forms layers parallel to	
	Ŭ	enerally segregating the felsic grains from	
	the hornblende		
Mineral %:	Hornblende	60%	
	Plagioclase	35	
	Quartz	3-5	
	Garnet	1-3	

Thin Section:

Drawing:		The second
Mineral	%	Properties:
Hornblende	60	β brown, olive green, α pale green, γ green. Grains prisms to end sections, poikikitic with inclusions of quartz, rounded.
Plagioclase	40	An42. Sericitized in places. RI~1.54, 2V~85-90°(-).
Quartz	1-2	Small grains mostly near hornblende.
Garnet	1	pinkish, sieve textured and broken grains.
Magnetite	1	Clumps associated with hornblende.
Apatite	tr	Grey, hexagonal end sections to short prisms.
?	tr	One small grain, $\gamma - \alpha \sim 0.025$, high relief, parallel extinction.

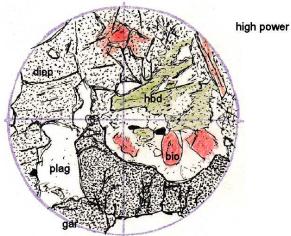
Texture: Foliated defined by elongation of hornblende prisms and plagioclase layers. Both prisms and end sections are visible so there is no lineation present. Some layers of fairly extensive

secondary sericitization in plagioclase pass through the rock parallel to foliation. Plagiclase grain boundaries commonly show 120° junctions indicating equilibrium conditions during growth. Garnets are poikeioblastic with numerous small inclusions of quartz, plagioclase and hornblende. Garnets are not wel formed and are broken and elongate parallel to foliation.

Facies (equilibrium assemblage):

Hornblernde-Plagioclase-Garnet

Sample: 1MT07 / 69KS78


Sample: INITU/	/ 09K	
Hand Specimen:		Quartzofeldspathic Gneiss
Grain Size:		3 - 7 mm av, down to 0.5 mm
Color:		Grey
Texture:		Foliation defined by the elongation of grains and by
Mineral %:		layers of quartz and feldspar 3-10mm thick. Garnets are associated with the quartz layers. Layers are not well defined and have very small lateral extent, no more than 3 to 4 tijes their thickness. K-spar 40% Plagioclase 10-15 Quartz 15 Pink Garnet 1-2
Thin Section:		
Drawing:		
Mineral	%	Properties:
Quartz	45	Somewhat fractured, strain shadows common, grains
		elongate.
Microcline	40	Gridiron twinning, internal fracturing in larger grains,
		perthite exsolution along some edges.
Plagioclase	15	Anorhite. Some Albite twins, sercitically altered except
8		along edges touching the k-spar
		Compositionally zoned?
Garnet	tr	Fibrous to crystalline, $\gamma - \alpha$ 0.036, some is associated with
Gaillet	u	the sericite. $\gamma = \alpha 0.050$, some is associated with
Biotite	tr	Small euhedral but fractured and broken.
Sericite		
	tr	Alteration in plagioclase (see above).
Hematite	tr	Red to opaque, along grain boundaries.
Texture:	Seriat	te grainsize but roughly divided onto two sections. Layers of
		large k-spar and large elongate strained quartz, and layers of
		rately large to fine grained quartz + feldspar with microcline
		nating. Grains here are equigranular, angular, and
		ocking. Some mermykite is present and some grains are
		ed and broken.

Facies (equilibrium assemblage): Plagioclase-K-spar-Quartz, + Garnet ?

Sample: 1MT08 / 70KS78

Pyroxene, Plagioclase Granulite
0.1-1mm
Black
Fine grained, granular, massive.
%

Thin Section:

Drawing:		and the same of the same same same same same same same sam
Mineral	%	Properties:
Plagioclase	45	Numerous 120° triple junctions.
Quartz	5	$\gamma - \alpha 0.009.$
Garnet	2	Broken, isotropic, high relief grains not in equilibrium, not
		in contact with biotite.
Biotite	5	Yellow/deep red.
Hornblende	7	Gren/pale pleochroism, amphibole end sections.
Diopside	25	45-50°(+), $\gamma - \alpha$ 0.028, γ^{-1} C =43°, several 120° grain
-		boundaries between adjacent pyroxenes.
Magnetite	1	Opaque, silvery in reflected light.
Hypersthene	11	2V high (-) Clear-pink pleochroism.

Texture: Fine grained, granular and massive. The grains commonly show 120° bourdary angles in plagioclase, quartz, and also somewhat in the pyroxene. There seems to be no evidence of instability between hornblende and garnet, garnte plus diopside, hornblend plus diopside. There is a distinct separation of biotite and garnet by plagioclase and I feel that the biotite and garnet are not stable. The sample is very fresh showing little or no secondary alterations.

Facies (equilibrium assemblage): Hornblende-Hypersthene

Sample: 1MT09 / 72KS78

Hand Specimen:	Garnet	Hornblende	Clinopyroxine	Quartz	Feldspar
	Gneiss				
Grain Size:	<1-2mm	l			
Color:	Black				
Texture:	Foliated	with bands of	of felsic minerals	<1 to 31	nm thick.
	Garnets	are pink and	found only in the	mafic ba	nds.
Mineral %:	Hornble	nde 30-	35%		
	Garnet	15-	20		
	Quartz	10			
	Feldspar	· 40			

Thin Section:

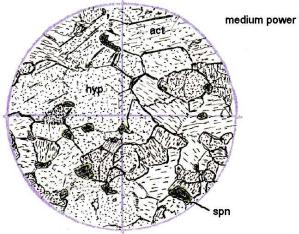
	hbd	medium power gar
Drawing: Mineral	0/	Descrition
Hornblende	%	Properties:
Hornblende	15	B dark brown/green
		A pale yellow/green
	10	C dark green
		a2Na(MgFe++,Fe+3Al)5(Si6Al2)O22(OH,F)2].
Plagioclase	40	(An).
Sericite	3	Alteration of plagioclase.
Quartz	15	
Diopside	15	(Augite?) 2V~55-60(+), Z^C 41°, Bi 0.025. Very pale yellow/green to pale blue/green. [CaMgSi2O6-Ca(MgFe++)Si2O6]
Garnet	10	Isotropic, pale pink.
Apatite	tr	
Opaques	2	

Texture: Fine grained (0.1mm) and equigranular, (the opaques are generally about ¹/₄ the size of the rest). Foliation is defined by bands of quartz plagioclase surrounded by dominant hornblende. Pyroxene is dominant in-between the bands and the garnets are

scattered. Most hornblende crystals are lineated (mostly end sections). The diopside is forming from ? hornblende.

Grains are equidimentional and not oriented with respect to the foliation. Good 120° triple junctions in-between diopside grains, plagioclase and diopside + opaques.

Facies (equilibrium assemblage):


Hornblende-Plagioclase (An28)-Diopside/Almandine

Sample: 1MT10 / 74KS78

Hand Specimen:	
Grain Size:	
Color:	
Texture:	
Mineral %:	

Hornblende, Granulite 0.1-1mm Black, weathers brown. Dense and possibly massive (difficult to say) %

Thin Section:

Drawing:		and the second se
Mineral	%	Properties:
Hypersthene	35	2V~85-90°(-). Twinning fairly common, pale yellow/pink color. End section gives (+) BxO figure.
Actinolite	52	γ :Z 21°, δ ~0.025-0.027 \rightarrow flash figure. 2V 80-85(-), α very pale green to colorless, β pale green, γ green. Amphibole cleavage.
Spinel	7	Very dark olive green, nearly opaque, isotropic?
Serpintine	5	Some serpentinization along a fracture and between some grains.
Magnetite	1	Opaque grains.

Texture: Massive, inequigranular, equidimentional grains, largely recrystallized (120° grain triple junctions common), granulitic rock. The actinolite is low Fe++ (γ :Z and 2V more nearly that of tremolite but pleochroism of actinolite), shows some twinning. It is in good equilibrium with the hypersthenes and the hypersthene is on average smaller grained. Spinel is deep green and fine grained and speckles the rock.

Facies (equilibrium assemblage):

Actinolite-Hypersthene-Spinel

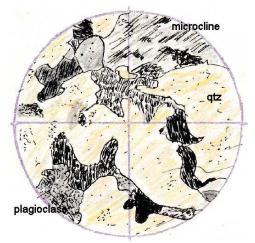
Sample: 1MT11 / 81KS78

Sample: 1MT11	/ 81K	S78	
Hand Specimen:		Quartzofeldspathic Gneiss	
Grain Size:		0.1 - 2 mm	
Color:		Grey - pink	
Texture:	Foliated, defined by elongate quartz crystals. Feldspar (Plag + K-spar) is also streaked out in aggregates and alternates with quartz.		
Mineral %:		Quartz 40%	
		Plagioclase 10-15	
		K-spar 40	
Thin Section:			
Drawing:			
Mineral	%	Properties:	
Quartz	45	Very elongate, contains inclusions of k-spar and plagioclase, small to large ameboidal, especially on the ends.	
Microcline	35	Gridiron twinning, perthite exolved out to edges of some grains.	
Plagioclase	19	Minor plagioclase twinning, some sericite (1-2% of plagioclase) alteration, some mirmykite present. Most of the plagioclase has reaction rims next to k-spar and the sericite does not invade this. 20-85-90 (-).	
Texture:	miner around not co grains plagic this.	e grain sizes from coarse (usually quartz) to very fine (all als). The quartz in growing very elongate grains which grow d and enclose other grains. Some 120° grain junctions but ommon. The plagioclase is mostly untwined though larger a show it. Sericite is usually present. Bordering k-spar, the oclase shows a reaction rim and the sericite does not invade Most smaller grains are equigranular, all sizes growing her, enclosing each other and interstitial. Very distinctive, should be a word for this!	

Facies (equilibrium assemblage): Quartz-Plagioclase-K-spar

Sample: 1MT12 / 83KS78

Sample. INTT12	/ 031		
Hand Specimen:		Quartzofeldspath	ic Gneiss
Grain Size:		0.1-2 mm	
Color:		Grey	
Texture:		associations of	by elongated quartz grains. Occasional garnet + biotite, or just garnet p to 5mm, not seen in thin section.
Mineral %:		Quartz	40%
		Plagioclase	50
		K-spar	5-10
		Garnet	tr
		Biotite	tr
Thin Section: Drawing: Mineral	%	Properties:	
Quartz	50	Strained, ameboida	l with inclusions
Plagioclase	45	· · · · · · · · · · · · · · · · · · ·	agioclase twinning, reaction rim next to
Microcline	5	Gridiron twinning.	
Muscovite	tr	Alteration in plagic	oclase.
Garnet	tr	1 0	
Texture:	ameb	oidal, embayed and	the largest being quartz. Quartz is with inclusions. This section cut normal quartz and plagioclase are all grown


to the lineation. K-spar, quartz and plagioclase are all grown together and all equant, angular to rounded. Cataclastic crushed grains.

Facies (equilibrium assemblage): Quartz-Plagioclase-K-spar. Biotite, Garnet

Sample: 1MT13A / 87KS78

Hand Specimen:	Garnet bearin	ng Quartzofeldspathic Gneiss
Grain Size:	1-2 mm	
Color:	White, with f	freckles of garnet
Texture:		ined, equigranular and layered. Layering is the sub-euhedral garnet crystals.
Mineral %:	Quartz	30-40%
	Feldspar	50-60
	Garnet	10

Thin Section:

Drawing: Mineral

K-spar

- % Properties:
- 30 Microcline-gridiron twinning common. Also perthetic k-spar.
- Quartz 37 Straw yellow, slight to moderate undulose effect.

Alteration of plagioclase.

- Plagioclase 20 Anorthite. Albite twinning rare, sericitically altered in part.
- Garnet 7 Isotropic, pink color, poikilitic grains.
- Zircon tr Rounded grains, high birefringence.
- Magnetite tr Associated with the garnet layer. Length shows strong absorption E/W. Shades of green to brown / black E/W.

Mermekite	tr
Sericite	6
Apatite	tr
Hornblende	tr

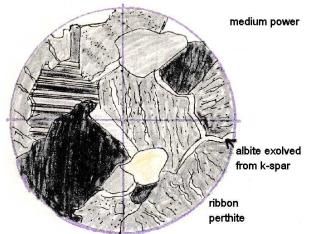
Texture: Medium grained, sub-anhedral grains of quartz and feldspar intergrown with rounded edges. Grain size variable with the quartz forming some of the largest, (quartz growing and enveloping the other grains). They are growing into each other and within each other in lobate forms. Microcline being surrounded by quartz is most common.

The garnets are sub-euhedral and poikilitic with inclusions of microcline, quartz and plagioclase. Assuming that the sericite was

originally plagioclase, the felsic composition falls into the minimum melting field for a granite.

Facies (equilibrium assemblage): Plagioclase-Microcline-Garnet

Sample: 1MT13B / 87KS78

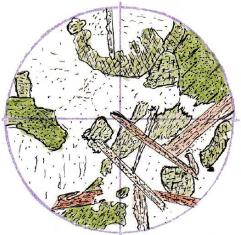

Sample: INTI 13	D / 0/1	4578
Hand Specimen:		Hornblende Quartzofeldspathic Gneiss
Grain Size:		0.5-4mm.
Color:		White
Texture:		Medium grained with larger (2-6mm) grains of
		hornblende. Foliated as defined by hornblende and
		garnet and by elongation of felsic grains.
Mineral %:		Hornblende 5%
		Quartz 30-35
		Feldspar 60
		Garnet 2-3
Thin Section:		
Drawing:		
Mineral	%	Properties:
Quartz	34	Straw yellow and undulose.
Plagioclase	30	Albite twinning and sericite (1%) alteration.
Orthoclase	25	Dusty, very low relief. Some 70-80° (-), perthite?.
Hornblende	10	Brown / green.
Biotite	tr	Red / orange.
Zircon	tr	C C
Apatite	tr	
Garnet	1	(not seen in thin section)
Texture:	Grain	sizes seriate from <0.1 to 5mm. Mostly quartz / feldspar
		rowths with little crystal shape (mostly anhedral). The
		lende is together in clumps and the grains well formed.

Facies (equilibrium assemblage): Plagioclase-K-spar-Hornblende-Garnet

Sample: 1MT13D / 87KS78

Hand Specimen:	Hornblende Quartzofeldspathic	Gneiss	
Grain Size:	1-5mm.		
Color:	White/yellow with black hornblende		
Texture:	Foliated, poorly defined by hornblende pods and crystals.		
	Felsic minerals equant and gra	nulated. Some tendancy	
	for more elongate grains to be or	riented to foliation.	
Mineral %:	Hornblende 5-10%		
	Quartz 20-30		
	Feldspar 60-70		

Thin Section:


Drawing:		and a second second second
Mineral	%	Properties:
Hornblende	10	Green / brown.
Biotite	tr	Red/black to yellow absorbtion. Corroded slightly on edges.
Quartz	30	Undulose extinction. Invading and engulfing other minerals.
Plagioclase	35	(An) Albite twinning common.
Seracite	tr	About 1% of plagioclase altered to seracite.
K-spar	25	Perthitic.
Albite	tr	Exolved to the edges of many k-spar grains.
Zircon	tr	Rounded grains, uniaxial (+).
Rutile	tr	Tetrahedral grains, uniaxial (+), TiO2.
Apatite	tr	
exture:	Seria	ate grain size and intergrown amehoid quartz grains engulfing

Texture: Seriate grain size and intergrown ameboid quartz grains engulfing feldspar. Some quartz grains are severly strained and aligned along the foliation. Quartz growth is also replacing the hornblende. K-spar is strongly perthitic and many grains are rimmed by exolved albite. Facies (equilibrium assemblage): K-spar-Plagioclase-Hornblende

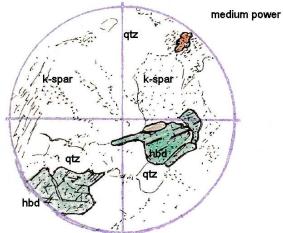
Sample: 1MT13E / 87KS78

Hand Specimen:	Hornblende Qu	uartzofeldspathic Gneiss
Grain Size:	0.5-5mm	
Color:	Pink to black	
Texture:	porphyroblasts	layered 2mm to 2cm+ with hornblende in the felsic layers and hornblende
	dominant in the	e mafic layers.
Mineral %:	Hornblende	20%
	Quartz	25
	Plagioclase	25
	K-spar	30

Thin Section:

Drawing:		and the state of t
Mineral	%	Properties:
Hornblende	20	Pale to dark olive green.
Biotite	tr	Yellow to deep brown.
K-spar	30	Strongly perthitic, exsolution within (perthite) and to the edges of grains (albite).
Quartz	30	large, ameboidal grains with inclusions to small equant grains.
Plagioclase	20	Twinning present but not common. Somewhat more common with hornblende due to absence of quartz and k-sapr. Some myrmikite also.
Texture:	as ar ameb	tion not seen in thin-section, biotite grains randomly oriented e hornblende. Seriate grain size distribution. Quartz grains boidal, lobate and with inclusions. K-spar strongly prthitic within and albite is exolved to the edges. Plagioclase has

minor sericite and reaction edges next to k-spar.


Facies (equilibrium assemblage):

Biotite-Hornblende-Quartz-Plagioclase-K-spar

Sample: 1MT13F / 87KS78

Sumpter milling (0) II	
Hand Specimen:	Hornblende Quartzofeldspathic Gneiss
Grain Size:	1-3mm.
Color:	Banded black and tan/white.
Texture:	Foliated and layered. Layers defined by hornblende
	bands but these layers do not pass all the way through the
	rock. Layers 1-20mm thick.
Mineral %:	Hornblende 25%
	Quartz
	Feldspar
	Plagioclase

Thin Section:

Drawing:		and a start of the
Mineral	%	Properties:
Hornblende	17	Green/yellow to brown/green. Amphibole cleavage.
Quartz	40	Slight to unstrained, growing around other minerals.
K-spar	13	Perthite with albite exolved to rims around many grains.
Plagioclase	30	(An). +Albite exolved from k-spar.
Sericite	tr	Alteration of plagioclase, <1%.
Biotite	tr	
Rutile	tr	Tetrahedral, uniaxial (+).
Apatite	tr	
Magnetite	tr	
Zircon	tr	

Texture: Grains intergrown with rounded grain boundaries. Mineral growth taking place along boundaries and perhaps within other grains. Quartz is growing around and enveloping crystals of feldspar and hornblende. The quartz is growing at the expense of the other minerals. Growth begins along grain boundaries. The k-spar is perthitic with rims of albite having exolved

The k-spar is perthitic with rims of albite having exolved completely out of the crystal.

Lots of ion mobility, especially silica which is replacing everything else. Plagioclase -> Quartz K-spar -> Quartz Hornblende -?> Quartz

Facies (equilibrium assemblage): Plagioclase-K-spar-Hornblende

Sample: 1MT14 / 90KS78

Sample: INT I	4 / YUK	5/8	
Hand Specimen	:	Quartzofeldspat	thic Gneiss
Grain Size:		0.1 - 1 mm	
Color:		Pink	
Texture:		Medium to fine	e grained, foliation defined by layers of
		garnet and/or qu	uartz, 1-2mm.
Mineral %:		K-spar	35%
		Quartz	30
		Plagioclase	30
		Garnet	3-5
Thin Section:			
Drawing:			
Mineral	%	Properties:	
Quartz	35	Strained, ameboid with inclusions, elongate grains present.	
Microcline	35	Gridiron twinning.	
Plagioclase	27	Twinning present, reaction rims. Sericite absent.	
Biotite	tr	Alteration to chlor	rite.
Hematite	tr		
Zircon	tr	Uniaxial (+).	
Apatite	tr		
Texture:		•	rained. Interlocking, inclusions, embayed

Fexture:Seriate but not coarse grained. Interlocking, inclusions, embayed
crystals, generally equant grains. Garnets are poikeoblastic and so
is some quartz (larget grains). Two zircons, one rounded and one
possibly euhedral. There is a trace of biotite that is all or partially
antered to chlorite.

Facies (equilibrium assemblage):

Quartz-Plagioclase-Garnet-Microcline

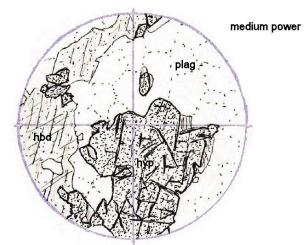
Sample: 1MT15A / 96KS78

Sample: IMT15	A / 90	KS/8
Hand Specimen:		Quartz Feldspar Gneiss
Grain Size:		0.5 - 5 mm
Color:		White, Brown on weathered surface
Texture:		Foliated as defined by bands of biotite plus red
		almandine garnet. Quartz forms some of the larger grains
		but is not prominent. Most grains 0.1-1mm. Quartz-
		biotite-garnet layers 3-10mm thick.
Mineral %:		Quartz 25-35%
		Feldspar 70
		Biotite 1-2
		Garnet 1-2
Thin Section:		
Drawing:		
Mineral	%	Properties:
Microcline	40	Gridiron twinning.
Quartz	35	Slight to unstrained, replacing and enclosing other grains of
		k-spar.
Garnet	3	Pink, Poikilitic but not much there. Concentrated along a
		band/layer.
Biotite	tr	Associated with the garnet layer. Length shows strong
		absorption E/W. Shades of green to brown / black E/W.
Muscovite	tr	Interstitial to the Quartz and microcline and growing as
		sericite in some plagioclase. A secondary replacement
		along grain boundaries.
Plagioclase	20	Anorthite. Albite twinning, about 1% of plagioclase altered
		to seracite.
Zircon	tr	
Texture:	Seria	e grain sizes with the larger grains generally made up of
		z. Shapes are ameboid, fluted and highly irregular. Quartz is

ture: Seriate grain sizes with the larger grains generally made up of quartz. Shapes are ameboid, fluted and highly irregular. Quartz is growing into and enclosing neighboring grains. Some of the plagioclase grains have mymerkite intergrowths. Garnet is in fragmental grains that are somewhat poikilitic but not much owing to their small size. Mostly surrounded by quartz. These are probably parts of once larger grains.

Biotite grains have ragged ends and clump together, possibly altering to chlorite.

In one place muscovite is growing interstitially to the quartz/kspar grains, mostly among the k-spar. It is a secondary mineral, alteration of k-spar along grain boundaries.


Facies (equilibrium assemblage):

Microcline-Quartz-Garnet-Plagioclase

Sample: 1MT15B / 96KS78

Sumpret 11111102 / 2011	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Hand Specimen:	Hornblende, Pyro	oxene, Plagioclase Granulite
Grain Size:	0.5-2mm	
Color:	Black	
Texture:	Salt and pepper a orientation.	amphibolites. Massive with no preferred
Mineral %:	Hornblende	60%
	Plagioclase	40

Thin Section:

Drawing:

Diawing.		
Mineral	%	Properties:
Hornblende	25	β deep brown, α yellowish brown, γ medium brown, (greenish?). Z^C 20°. Hbd->Pyx.
Plagioclase	45	(An40). Common 120° grain boundaries.
Hypersthene	10	2V(+)70°, Z^C5 max.
Diopside	15	2V(+)40°-50°, Z^C40°max.
Garnet	5	Wormy, deeply embayed. Intergrowths of plagioclase into
		the garnet. Gar \leftrightarrow Plag
Magnetite	tr	
Sericite	1	Alteration in plagioclase.
Apatite	tr	
	Hb +	$Q \leftrightarrow Op + Cp + Pl + H2O$
Texture:	size. 120°	sive, randomly oriented grains with small variations in grain Triple junctions between plagioclase are commonly around each. Mafic minerals tend to be slightly larger that the oclase. Hornblende is reacting to form pyroxene. The garnet

has numerous intergrowths of plagioclase and is out of equilibrium. There are two types of pyroxene, diopside and hypersthenes. In one place I note a relic grain of diopside completely enclosed in hypersthenes and I infer that the diopside is reacting to form hypersthene. Sericite is a common secondary alteration of plagioclase.

Hbd →Hyp→Diop Gar→Plag↓ Sericite

Facies (equilibrium assemblage): Hypersthene-diopside-Plagioclase

Sample: 1MT16 / 102KS78

Sample: IMT16) / 102ł			
Hand Specimen:		Garnet Quartzofeldspathic Gne	eiss	
Grain Size:		0.1 - 5 mm		
Color:		Pink		
Texture:		Foliated, layers of feldspar and	d quartz \pm garnet 1-10mm	
		thick. Quartz grains elongate p	arallel to foliation.	
Mineral %:		Quartz 40%		
		K-spar 30		
		Plagioclase 25		
		Garnet 2-3		
Thin Section:				
Drawing:				
Mineral	%	Properties:		
Quartz	45	Strained, all sizes. Larger grains inclusions and embayed grains of		
Plagioclase	31	Albite twinning, moderate to ex Reaction rims and sericite-fre	tensive sericite alteration.	
g · · ·	-	mermykite.		
Sericite	5	Alteration of plagioclase.		
Microcline	20	Gridiron twinning. Larger grinternally.	rains may be fractured	
Garnet	3	Pink in thin section.		
Biotite	tr	Mica, brown, yellow to black hematite + chlorite.	pleochroism, altering to	
Hematite	tr			
Chlorite	tr	Pleochroic green/clear.		
Zircon	tr	Euhedral.		
Rutile	tr	Uniaxial (+) Square end sections grained, high relief and birefinge		
Apatite	tr	88-		
Texture:	and k grains There chlori	e grain sizes, interlocking, ame -spar grains. K-spar shows som s, plagioclase has reaction rims ney is a mica that is extensively altet te or chloritoid. Plagioclase is mo some muscovite forming.	e fracturing in the larget xt to k-spar. tred to hematite + possibly	

Facies (equilibrium assemblage): Quartz-Plagioclase-Microcline-Garnet

Sample: 1MT17 / 103KS78

Sample: IMT17	/ 1031	X S78		
Hand Specimen:		Quartzofeldspat	hic Gneiss	
Grain Size:		0.1 - 1 mm		
Color:		Pink-grey, layer	ed	
Texture:		Foliated, define	d by lenses of quartz/feldspar about 7mm	
		thick maximum	and several ca long before pinching.	
		Otherwise quart	tz/feldspar/biotite. The biotite grains are	
		not well aligned	to the foliation.	
Mineral %:		Quartz	40%	
		Plagioclase	30	
		K-spar	25	
		Biotite	5	
		Pink garnet	tr	
		C		
Thin Section:				
Drawing:				
Mineral	%	Properties:		
Quartz	40	1	ins elongate parallel to foliation.	
Microcline	24	Gridiron twinning		
Plagioclase	30	Albite twinning. N	lo sericite.	
Biotite	5	-	w to deep brown or black. Felty, no	
		preferred orientati		
Garnet	1	Small broken grain		
Zircon	tr	C		
Apatite	tr			
1				
Texture:	Fine	grained, foliation	or layering is defined compositionally.	
			y preferred orientation and did not grow	
			t. Quartz and feldspar grains are variable	
			ge, and grains are equant. In one place	

quartz shows some elongation parallel to foliation.

Facies (equilibrium assemblage):

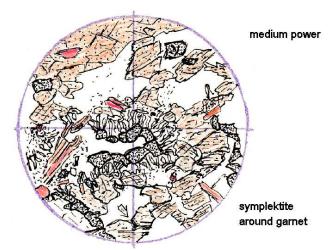
Quartz-Plagioclase-K-spar-Biotite-Garnet

Sample: 1MT18A / 107KS78

Sample: 1MT18	SA / 10	7KS78		
Hand Specimen:		Quartzofeldspa	thic Gneiss	
Grain Size:		0.1 - 0.5 mm fine grained		
Color:		Grey		
Texture:		Gneissic compo	ositionally layered 1-10mm based on the	
		presence or aba	sence of biotite flakes. Biotite shows no	
		preferred orient	ation.	
Mineral %:		Quartz	35%	
		Plagioclase	35	
		K-spar	30	
		Biotite	1-3	
		Garnet	tr	
Thin Section:				
Drawing:				
Mineral	%	Properties:		
Quartz	35	Slightly strained a	and fractured.	
Microcline	28	Gridiron twinning		
Plagioclase	35		ninor to no sericite.	
Biotite	2	Red-yellow to black, red on basal plane.		
Garnet	tr	Pinkish broken gr	-	
Apatite	tr	C		
Texture:	Fine	mained very gran	ular texture, layering shows best in hand	
Texture.			ite-bearing layers stand out against white	
			rs. Biotite grains show no preferred	
	orient	ation and therefore	did not grow in a stressed environment.	

Facies (equilibrium assemblage):

Sample: 1MT18B / 107KS78


Hand Specimen:		Quartzofeldspathic Gneiss		
Grain Size:		0.1 - 5 mm		
		••••		
Color:		Pink-Grey		
Texture:		Layered feldspar / quartz-feldspar 3-20mm thick with		
		garnet porphyroblasts 3-5mm in diameter. Medium		
		grained, roughly equant shaped grains.		
Mineral %:		Quartz 40%		
		Plagioclase 35		
		K-spar 20		
		Garnet 1-3		
Thin Section:				
Drawing:				
Mineral	%	Properties:		
Quartz	45	Strained, ameboidal with inclusions, elongate, fine to		
		coarse grains, seriate.		
Plagioclase	35	Some plagioclase twinning present, fairly extensive sericite		
C		alteration. Reaction rims next to k-spar. 10% of plagioclase		
		sericitized.		
Microcline	16	Gridiron twinning. Some alteration to muscovite.		
Garnet	4	Fractured grains.		
Biotite	tr	Alteration to chlorite (or muscovite?).		
Hematite	tr	Red to specular in reflected light.		
Zircon	tr	Rounded fractured grains.		
		0		
Texture:	Seria	te, equigranular, interlocking, ameboidal and included quartz		
		s, altered plagioclase and fractured garnet.		
	0			

Facies (equilibrium assemblage): Quartz-Plagioclase-K-spar-Garnet

Sample: 1MT19A / 108KS78

Hand Specimen:	Quartz rich Ga	Quartz rich Garnet Diopside Hornblende Gneiss		
Grain Size:	0.1-2mm			
Color:	Grey to black			
Texture:	Granular, massive with a quartz-feldspar vein running			
	through.			
Mineral %:	Hornblende	25%		
	Garnet			
	Quartz	30		
	Plagioclase	30		

Thin Section:

Drawing:	
Mineral	

%	Properties:
/0	

- Garnet 10 Extensively fractured with some quartz inclusions. Not in equilibrium with biotite.
- Biotite 2 Yellow to deep red.

tr

- Hornblende 18 Yellow α , brown β , brown γ . γ - α 0.022, Z^C 25^{\circ}, 80°(-).
- Diopside 5 $Z^{C} 19^{\circ}, \gamma \alpha 0.022, 2V55^{\circ}(+)$, colorless.
- Plagioclase 30 Albite twinning, sericite alteration moderate ~2%.
- Quartz 35 Strained, ameboidal with inclusions, some 120° grain junctions.
- Magnetite tr Opaque, shiny in reflected light.

Apatite

- Zircon tr Uniaxial (+), very high γ - α .
- Texture: Hornblende grains are largest along with quartz, everything elas moderate to fine grained, massive, granular. Quartzofeldspathic vein shows typical seriate, ameboidal, interlocking grains but without any k-spar. Hornblende – garnet dominate the rest of the rock. Garnet fractured, small crystals some with inclusions of quartz or plagioclase (plagioclase grains are 'ringed' by garnet in several places). Garnet commonly shows dis-equilibrium features,

especially in the presence of biotite. Features are wormy intergrowths along the edges.

Facies (equilibrium assemblage): Hornblende-Diopside-Garnet-Quartz-Plagioclase

Sample: 1MT20 / 109KS78

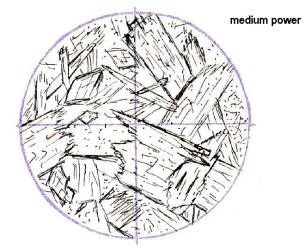
Hand Specimen:		Marble	
Grain Size:		3-5mm	
Color:		White, weathers tan.	
Texture:		Very coarse interlocking grains.	
Mineral %:		Calcite 100%	
Thin Section:			
Drawing:			
Mineral	%	Properties:	
Calcite	99	Slow ray bisects the acute angle on twin planes. Very little twinning present.	
Quartz	1-2	Rounded grains, strained and much subgrain development.	
Texture:	Interlocking grains of calcite showing very little twinning. Quartz grains are round to angular, showing much subgrain development.		
Facies (equilibrium assemblage):			

Calcite

Sample: 1MT21A / 111KS78

Hand Specimen:	
Grain Size:	0.1-2mm
Color:	Black
Texture:	Lineated, defined by amphibole and a layer of quartz feldspar 6-7mm thick. A weathered surface has slightly foliated salt-and-pepper hornblende plus plagioclase.
Mineral %:	

Thin Section: Drawing: Mineral % Properties:


Texture:

Facies (equilibrium assemblage):

Sample: 1MT21B / 111KS78

Hand Specimen:	Tremolite rock (Tremolitite)
Grain Size:	1-3mm
Color:	Tan - brown
Texture:	Amphibole prisms massed in a felty texture, randomly oriented. There is no layering or banding, compositional or otherwise.
Mineral %:	Tremolite 100%

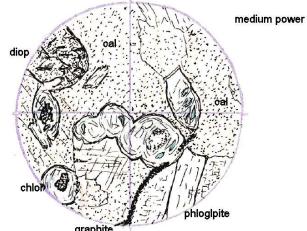
Thin Section:

Drawing: Mineral

% Properties:

Tremolite	100	Z [^] C 20°, γ - α ~0.026, very slight greenish pleochroism and
		stronger association on γ . 2V 85-90° (±), relief variable,
		moderate n/s, moderate-high e/w. Amphibole end-sections
		(green dot).
		[Ca2(Fe) Mg5Si8O22(OH)2]
		(-) crystal:
		BxA on prismatic section (-)
		BxO on end section (+)
		α colorless
		β colorless
		γ very pale green-yellow
Magnetite	tr	

Magnetite tr


Texture: Intergrown tremolite prisms with no preferred orientation, (felty). Ca2Mg3Si8O22(OH)2 Iron is present but in very small amounts (Z^C~20°) Ca2(Mg, Fe++)5Si8O22(OH)2

Facies (equilibrium assemblage): Tremolite

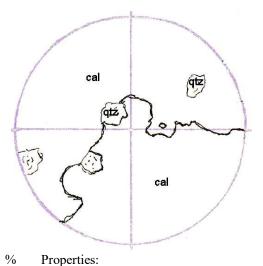
Sample: 1MT22 / 112KS78 Hand Specimen: Di

Hand Specimen:	Diopside Mar	ble
Grain Size:	~1mm mica, 2	-5mm calcite
Color:	Light grey.	
Texture:	diopside and	ed marble with numerous green grains of muscovite. The diopside seems soft and yers. The grains and spots within and
	between the ca	alcite grains.
Mineral %:	Calcite	90%
	Muscovite	3-5
	Diopside	5

Drawing:		graphite
Mineral	%	Properties:
Phlogopite	3	Pale tan yellow / colorless ns, variagle relief.
Diopside	5	Round grains interbedded and interstitial in dolomite.
Calcite	85	Fast ray bisects the obtuse angle of twins.
Chlorite	1	Pleochroic green parallel to extinction. Diopside \rightarrow calcite.
Graphite	1	Dusty, elongate groups both interstitial and imbedded.
Serpentine	5	Fibrous, pale yellow to green, 1 st order yellow, associated with chlorite (green), not pleochroic.
Hydrogosson	ner tr	Isotropic, high relief, 1.7-1.75, colorless.
T .		

Texture: Large grains of calcite with rounded imbedded grains of diopside, most of which is altered to chlorite. Massive texture, there are euhedral laths (primary?) pf phlogopite, again without preferred orientation. The graphite is in needle-like powdery masses.

Facies (equilibrium assemblage):


Calcite-Diopside-Phlogopite

Sample: 1MT24A / 118KS78

Hand Specimen: Quartz-bearing Marble

Grain Size:	3-7mm	
Color:	White, cream on	weather surface.
Texture:	Very coarse grain	ned marble.
Mineral %:	Calcite	100%

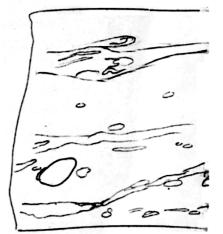
Thin Section:

Drawing:

Mineral	%
Calcite	99
Quartz	1
Muscovite	tr

Texture: Very coarse grained with irregular and rough grain boundaries. Quartz is in small blebs within grains or interstitial. Muscovite is mostly imbedded.

Facies (equilibrium assemblage):


Sample: 1MT26 / 125KS78

Hand Specimen:		Quartz-bearing Marble	
Grain Size: Color: Texture: Mineral %:		Calcite	ing grains of calcite. 100% tr
Thin Section:			
Drawing:			
Mineral	%	Properties:	
Calcite	85	Slow ray bisects the	acute twin angle.
Quartz	15	Strained with round and k-spar. Subgrain	led inclusions of muscovitre, calcite, development.
Muscovite	tr	Variable relief, color	less, no pleochroism.
Microcline	tr	Small grains, gridiror	n twinning.
Biotite	tr	One very relict grain	within quartz.
Hematite	tr	Red in reflected li foliation. Pale red to	ight, small opaque laths parallel to white (ilmenite?).
Texture:	subgra form	ains. The quartz aggre a possible foliation.	s of calcite with quartz as aggregates or egatesare slightly elongate and tend to They contain numerous inclusions of the calcite and quartz are intergrown.

Facies (equilibrium assemblage): Quartz-Calcite-K-spar-Ilmenite

Sample: 1MT27B / 126KS78

Hand Specimen:	Biotite-Bearing Quartzofeldspathic Gneiss
Grain Size:	0.1 - 1 mm, augen to 1 cm
Color:	Grey
Texture:	Fine grained, foliated as defined by biotite flakes with

lenses and layers of quartz-feldspar up to 2cm, but 3-5mm average.

This rock strongly resembles a meta-sediment tp me with pebbles up to 1 cm and a cross-bed. Possibly as arkose with felsic sand layers that are starting to form augen in places. The biotite wraps around augen and garnets. Drawing:

Thin Section:

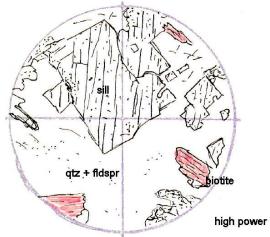
Drawing:		
Mineral	%	Properties:
Quartz	30	Strained, elongated in felsic bands with strings of inclusions. 120° junctions.
Microcline	20	Gridiron twinning. 120 ° junctions.
Plagioclase	40	Minor twinning, 120 ° junctions. Moderate to little (10%) sericite alteration.
Biotite	10	Green-brown / yellow. Green/yellow near garnet. Grows into and wraps around garnet.
Garnet	1	
Apatite	tr	

Texture: Augen are aggregates of large equigranular plagioclase crystals with 120° junctions. Felsic layers consist of large elongate quartz grains plus plagioclase and microcline. The quartz is elongate, strained with trains of inclusions (biotite mostly) along foliation. The major part of the rock consists of biotite, equagranular quartz, plagioclase and microcline with a very slight tendancy to be elongate parallel to foliation. Poligonal to interlobate, 120° junctions common. Biotite becomes distinctly greenish next to the garnets.

Facies (equilibrium assemblage):

Biotite-Garnet-K-spar-Plagioclase-Quartz

Sample: 1MT2	7C / 12	26KS78		
Hand Specimen:	Quartzofeldspathic Gneiss			
Grain Size:		0.1 - 3 mm		
Color:		Pink		
Texture:		Moderate to coarse grained, foliated as defined by		
		extremely streaked out (long dimention 5 to 6 times the		
		short) quartz and to a lesser extent feldspar also.		
Mineral %:		Quartz 35%		
		Plagioclase 30		
		K-spar 30		
		Biotite? 5		
Thin Section:				
Drawing:				
Mineral	%	Properties:		
Quartz	39	Small to large, extremely elongate and strained grains. Too		
		long to be ameboidal, but some contain inclusions.		
Microcline	35	Rounded to angular, numerous 120 ° triple grain junctions,		
		seriate.		
Plagioclase	25	Small to moderate sericite alteration (~5% of plagioclase),		
		some plagioclase twinning.		
Biotite	1	Small grains parallel to foliation.		
Muscovite	tr	Associated with sericite.		
Hematite	tr	Opaque, red in reflected light.		
Rutile	tr	Uniaxial (+) on square end section.		
Texture:		te grain sizes, quartz grains are very streaked out and		
		ocline are recrystallized and show 120 ° triple grain junctions		
		commonly. Plagioclase also shows 120 ° junctions and it is		
	some	what altered to sericite.		


Sample: 1MT27C / 126KS78

Facies (equilibrium assemblage): Quartz-Plagioclase-K-spar-Biotite

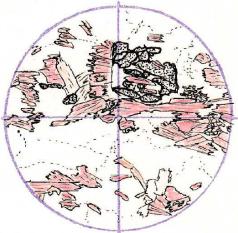
Sample: 1MT27G / 126KS78

Hand Specimen:	Biotite Garnet Quartzofeldspathic Gneiss
Grain Size:	1 – 5 mm
Color:	Grey
Texture:	Banded and foliated. Felsic layers 1-3mm, contain quartz and feldspar, vary in thickness and are wavy. Mafic bands contain quartz, feldspar, biotite and garnet porphryoblasts. Garnets are pink and 3-5mm across.
Mineral %:	Quartz40%K-spar30Biotite20Garnet10

Thin Section:

Drawing:		and the second with the second s
Mineral	%	Properties:
Biotite	15	Very pale yellow (n/s), red/brown (e/w).
Sillimenite	tr-1	$2V \sim 30^{\circ}$ (+). Good end sections.
Garnet	15	Moderate to un-poikioblastic, euhedral, pinkish.
Quartz	35	Grains equigranular to elongate parallel to foliation and undulose. Angular boundaries.
K-spar	35	pethitic mostly, some grains have gridiron twins.
Plagioclase	tr	Minor on stained slab.
Muscovite	tr	
Chlorite	tr	
Hematite	tr	Red in reflected light.
Zircon	tr	High $\gamma - \alpha$ and forms halos in biotite.
Texture:	paral	ular texture, seriate grain size. Quartz grains are elongate lel to the foliation in places. Biotite forms the major foliation they wrap around the garnets that grow to 5mm as

poikioblastic euhedral grains. Partly associated (this may be more apparent than real) with the biotite is fairly coarse grained sillimenite (which is still very fine grained compared to the other minerals). In this section nearly all of the sillimenite crystals are seen on end, thus defining a lineation on the foliation. Some of the k-spar is strongly perthitic.


Facies (equilibrium assemblage):

K-spar-Sillimenite-Garnet (Alm)-Biotite ?

Sample: 1MT27J / 126KS78

Garnet Biotite Qu	artzofeldspathic Augen Gneiss
$0.1-7 \ mm$	
Grey/black	
	eiss. K-spar augen ~7mm to 2cm. Mafic
layers are garne	et bearing and quartz-feldspar layers
contain the augen	1. Layers 3-10 mm thick.
Quartz	40%
Plagioclase	25
K-spar	10-15
Biotite	10
Garnet	10
	0.1 – 7 mm Grey/black Banded augen gn layers are garno contain the auger Quartz Plagioclase K-spar Biotite

Thin Section:

Drawing:	
Mineral	% Properties:
Quartz	40 Elongate parallel to foliation and bent arouns augen, ameboidal with inclusions.
Microcline	15 Gridiron twinned, perthitic common, the augen show strain shadows, 120 ° junctions.
Plagioclase	25 Some plagioclase twinning and sericite alteration (~2% of plag). 120 ° junctions.
Biotite	13 Yellow / brown-red. Small grains parallel to foliation. In equilibrium with garnet. Shows some wormy intergrowths of plagioclase on edges of some grains.
Garnet	7 Small grains, broken, associated with biotite layers. Garnet grows around biotite or both grow in equilibrium.
Zircon	tr Halos in biotite.
Fexture:	Banded, layers of quartz plus feldspar 1-15mm thick with augen of k-spar, strained, interlayered with biotite/garnet rich layers. Garnets grow around and include biotite grains and show no disequilibrium textures. The biotite has fairly common wormy

intergrowths of k-spar or plagioclase either on the edges or all

through the grain. Not associated with garnet/biotite contacts, it seems to be more probably a disequilibrium with the temperature/pressure conditions in the rock.

Quartzofeldspathic layers have 120 ° triple junctions, elongate and strained quartz and a seriate grain size distribution.

Facies (equilibrium assemblage):

Garnet-Biotite-Plagioclase-K-spar-Quartz

Sample: 1MT28A / 131KS78

Sample: 1MT2	8A / 13	1KS78	
Hand Specimen:	: Quartzofeldspathic (Gneiss)		
Grain Size:		0.5 - 2 mm	
Color:		Grey	
Texture:		Massive, equiangular with biotite in no preferred orientation.	
Mineral %:		Quartz 35%	
		Plagioclase 35	
		K-spar 30	
		Biotite 1-2	
Thin Section:			
Drawing:	0 /		
Mineral	%	Properties:	
Quartz	35	Strained, ameboidal, mymerkitic.	
Microcline	30	Twinned, mymerkitic.	
Biotite	1-2	Yellow to red-black, felty, partially replaced by chlorite in a few grains.	
Muscovite	tr	Variable relief, colorless.	
Sericite	10	Extensive alteration in plagioclase.	
Chlorite	tr	Biotite -> Chlorite.	
Zircon	tr	Pleochloric halos in biotite.	
Plagioclase	25	Extensive sericitic alteration. Minor twinning, mymerkite	
-		reaction rims near k-spar.	
Texture:	There borde All g	te, quartz is strongly ameboidal and contains inclusions. e is mymerkite developed along many plagioclase/microcline ers and other intergrowths between plagioclase and k-spar. rain boundaries are highly irregular. There is much sericite tion in the plagioclase. There are also inclusions of quartz	

Facies (equilibrium assemblage):

Quartz-Plagioclase-Microcline-Biotite

within feldspar.

Sample: 1MT28B / 131KS78

Hand Specimen:	Pegmatite
Grain Size:	
Color:	Pink
Texture:	Graphic Qtz-K-spar Pegmatite Vein
Mineral %:	Qtz 20%
	K-spar 80%

Thin Section:		
Drawing:	Magnification:	
Mineral	%	Properties:
Quartz	20	Strained, graphically intergrown into the K-spar grain
Microcline	79	One grain! All twinned, some fractures filled with
		plagioclase -> perthite?
Plagioclase	1	Minor, sericite bearing, twinned
Biotite	tr	One grain
Texture:	Ignec	ous, a graphic quartz, microcline pegmatite vein.

Facies (equilibrium assemblage):

Sample: 1MT30A / 142KS78

Sample. INT 50	A/144	2K576
Hand Specimen:		Biotite Garnet Quartzofeldspathic Hornblende Gneiss
Grain Size:		0.5-5mm
Color:		Grey
Texture:		Layered (mafic and felsic rich) and foliated. Large porphyroblasts of garnet (red) confined mostly to the mafics. Augen are forming in the felsic layer. Felsic layers are 1-5 mm thick.
Mineral %:		Hornblende \setminus 30-40%
		Biotite /
		Quartz \setminus 50-60
		Feldspar /
		Garnet 5-10
Thin Section: Drawing:		
Mineral	%	Properties:
Hornblende	20	β dark green/brown, α light yellow, γ dark green.
Biotite	7	NS – yellow, ew dark red/brown.
Garnet	8	Seive texture to very broken up. Pinkish.
Quartz	30	Strain shadows common. Grains elongate parallel to foliation.
Plagioclase	35	Albite twins, sericite alteration, 2V~80°(+) (labrodorite?).

Sericite tr Alteration of plagioclase, $\sim 1\%$.

Apatite tr

Hematite tr Opaque, red in reflected light.

Texture: Inequigranular with grains in the felsic bands much larger than in the mafic. Garnets are porphryoblastic and poikioblastic. The foliation as defined by elongate quartz, biotite and hornblende wraps around the garnet. Grain shapes in the felsic layers are elongate parallel to foliation, irregular, interfingering to ameboid. Biotite generally euhedral, hornblende sub to euhedral. Biotite and garnet in equilibrium.

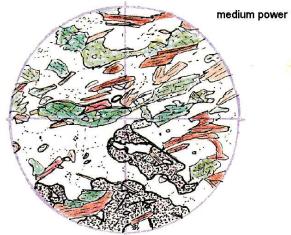
Facies (equilibrium assemblage):

Biotite-Hornblende-Plagioclase-Garnet

Sample: 1MT30B / 142KS78

Sample: INT S		
Hand Specimen:		Foliated, feldspar-bearing quartzite.
Grain Size:		1-5 mm
Color:		White - grey
Texture:		Foliated, weakly defined by compositional layering.
Mineral %:		Lenses and stringers of k-spar and plagioclase stand out in an etched surface. This is essentially a foliated feldspar-bearing quartzite. Qtz 90% Plagioclase 1-2 K-spar 10
Thin Section:		
Drawing:		
Mineral	%	Properties:
Quartz	±90	Fine to coarse, elongate, ameboidal, strained, contains numerous small to medium inclusions
Microcline	10	Perthetic, grid-twinned, augen to 7mm, small rounded aggerates, albite exolved to the edges of many smaller grains.
Plagioclase	1-2	Twinned, moderately sercitized, aggregates form small layers parallel tp foliation and contain biotite and chlorite?.
Biotite	tr	Also as strings of crystals parallel to foliation included within quartz. Yellow/red, no preferred orientation, within plagioclase crystal aggregate.
Chlorite	tr	Green color, associated with biotite and plagioclase.
Hematite	tr	Red stain coating quartz mostly.
Zircon	tr	
Texture:	Serici	ite grain size, quartz grains elongate, ameboidal with

Texture: Sericite grain size, quartz grains elongate, ameboidal with inclusions. Microcline tends to form rounded aggregates and augen, it is perthitic. Plagioclase tends to form elongate aggregates parallel to foliation and is moderately sericitized. Biotite appears as small inclusions in quartz parallel to foliation and randomly oriented within a plagioclase aggregate. Hematite forms coatings on grains and is concentrated mostly in one area.


Facies (equilibrium assemblage):

Quartz-plagioclase-microcline-biotite

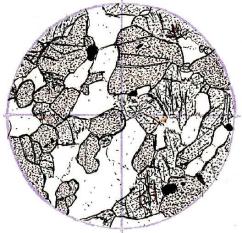
Sample: 1MT30C / 142KS78

Hand Specimen:	Garnet Biotite Hornblende Quartzofeldspathic Gneiss
Grain Size:	0.5-1mm
Color:	Black, layered
Texture:	Layered and foliated bands of quartz about 3-4mm and contain k-spar. Generally very fine grained. Contains pink almandine garnet, especially in dark parts.
Mineral %:	Hornblende 40% Quartz \ 60 Plagioclase / K-sapr Garnet

Thin Section:

	and the foreign and the second s
%	Properties:
30	Green/dark green/dark green brown. Elongate parallel to foliation.
10	Yellow, red/brown/black.
8	Pink, sieve texture.
20	An, sericite alteration moderate $\sim 2\%$.
tr	
27	Some grains elongate and parallel to foliation, undulose.
5	
tr	
tr	
tr	
	ngly foliated, defined by parallel orientation of hornblende,
	30 10 8 20 tr 27 5 tr tr tr Strot

Texture: Strongly foliated, defined by parallel orientation of hornblende, biotite and elongate quartz grains. Some garnet is also stretched with trains of inclusions parallel to foliation. Garnets have a sieve texture but are too irregular to see patterns in the inclusion


arrangement. Garnets are confined to the mafic bands (\sim 50% mafics). Foliation wraps around the garnets.

Facies (equilibrium assemblage): Hornblende-Biotite-Garnet-Plagioclase

Sample: 1MT30F / 142KS78

Hand Specimen:	Quartz, Hypersthene, Garnet, Granulite
Grain Size:	0.1-2mm
Color:	Black
Texture:	Foliated with layers, garnet-rich or quartz-rich. Thin layers rich in magnetite also.
Mineral %:	°/0

Thin Section:

Drawing:		the second
Mineral	%	Properties:
Quartz	29	Strained, elongate along quartz-rich layers, otherwise equant crystals.
Garnet	34	Anhedral to euhedral, mostly sieve textured except in the quartz-rich layers. Rounded in the quartz-rich layers.
Magnetite	tr-1	Layers of interstitial, anhedral, opaque grains, silvery in reflected light.
Hypersthene	37	Pale green to pink pleochroism. γ - α 0.011-0.013, Parallel extinction. 2V~60°(-).
Texture:	domin grain and n Mostl juncti	conal with mostly 120° grain boundaries. Garnet is the mant mineral, mostly sieve textured except in the coarser ed garnet plus quartz layers where it is without inclusions nostly rounded in outline. By granular with equant grain dimentions, common 120° tons, no preferred orientation. Significantly, I find no bar of any kind in thei sample.

Facies (equilibrium assemblage): Hypersthene-Garnet-Quartz

Sample: 1MT31 / 147KS78

Sample: INT 51				
Hand Specimen:		-	tzofeldspathic Gneiss	
Grain Size:	0.1-2mm			
Color:	Black.			
Texture:		feldspar 1-10mm	with lenses and stringers of quartz plus but variable in thickness along their rnet bearing layers also occur but are	
Mineral %:		Hornblende	40% +	
		Quartz	20 -	
		· ·	40	
		-	tr-1	
Thin Section:				
Drawing:				
Mineral	%	Properties:		
Quartz	20	Uniform, some strai	ined.	
Plagioclase	38	-	g common, minor sericite, some zoning	
Hornblende	40	β green/brown, α twinning present.	pale green, γ green. 2V70-80°(-),	
Diopside	tr	Z^C 41°, 2V60°(+),	$\gamma - \alpha 0.026$, colorless.	
Garnet	2	Seive textured, pink		
Apatite	tr	× 1		
Magnetite	tr			
Biotite	tr	Yellow/red elongate	e ragged fibrous crystals, only a few.	
Sericite	tr	C		
Texture:	Foliat	tion is only weakly	quartz and plagioclase 1-5mm thick. defined by the hornblende, but an is evidence for foliation and possibly a	

Hornblende grains, especially larger ones contain inclusions (rounded) and all the biotite grains are associated with hornblende and growing within the hornblende. That is, hornblende is growing around the biotite. The biotite grains are ragged, splintery with some wormy intergrowths of quartz or plagioclase. Garnets are sieve textured but show no evidence of rotation during growth.

Facies (equilibrium assemblage):

lineation.

Quartz-Plagioclase-Hornblende-Garnet

Sample: 1MT32 / 151KS78

Sample. INTISA	2/1311	10/0			
Hand Specimen:		Biotite-Bearing Quartzofeldspathic Gneiss			
Grain Size:		0.5 (bio) – 4 (pl	0.5 (bio) - 4 (plag) mm		
Color:		Grey			
Texture:		grains of plagic	d, foliated but not well layered. Rounded belase surrounded by quartz + biotite. K- or augen (1.5cm) and the foliation wraps		
Mineral %:		Quartz	30%		
		Plagioclase	30-40		
		K-spar	12-20		
		Biotite	10-15		
Thin Section: Drawing:					
Mineral	%	Properties:			
Biotite	3	Yellow to deep re	d-brown.		
Plagioclase	34	1	sericitic alteration.		
Quartz	25	Undulose.			
Microcline	10	$20 \sim 40^{\circ}$ (-) Gridiron twinning present in some grains.			
Muscovite	1	Plagioclase -> Mu	iscovite, Biotite -> Muscovite.		
Sericite	25	Whitish mica, plagioclase -> sericite.			
C11 .	2	\mathbf{D}'_{i}			

Chlorite 2 Biotite -> Chlorite. Greenish with anomalous blue colors. Apatite tr

ApatitetrChlorotoidtr $20 - 60^{\circ}(+)$

Texture: Massive, seriate grain sizes. Though in hand specimen the plagioclase forms the largest grains, this is not apparent in thin section. Most k-spar is grouped into bands parallel to foliation. Biotite is altering to muscovite and chlorite. It is mostly oriented parallel to foliation. Most of the quartz is strained and elongate grains are parallel to foliation. Plagioclase is altering to sericite and some muscovite. Grains are rounded, angular, or ameboid. Some triple-junctions, especially in k-spar groups, are 120 ° equiangular.

Facies (equilibrium assemblage):

High grade:	Biotite-K-spar-Plagioclase-Quartz
Secondary:	Chlotite-Muscovite-Quartz

Sample: 1MT33 / 156KS78

Sample: INITS:		
Hand Specimen:		Plagioclase-bearing quartzite.
Grain Size:		1 - 2 mm
Color:		Grey
Texture:		Foliated, weakly defined by elongate, or strung-out
		crystals of plagioclase within the dominant quartz.
Mineral %:		Qtz 90%
		Plagioclase 9
		Biotite \setminus 1
		Garnet /
Thin Section:		
Drawing:		
Mineral	%	Properties:
Quartz	± 90	Very large elongate crystals, strained, with irregular or
		interlobate edges. Medium crystals also contain inclusions
		of all other minerals.
Plagioclase	5	Moderate-strong sercite alteration, twinning, small rounded
		crystals within and between quartz crystals.
Sericite		Alteration in plagioclase.
Muscovite	tr	Fibrous to crystalline, $\gamma - \alpha$ 0.036, some is associated with
		the sericite.
Biotite	tr	Yellow/red-black, medium to fine grains parallel to
		foliation and in clumps, alteration to chlorite.
Chlorite	tr	Colorless/green pleochroism, fibrous to crystalline,
		anomalous blue colors.
Garnet	tr	Opaque, pinkish, alteration to chlorite.
Hematite	tr	Opaque, shiny to red, specular.
Rutile	tr	Rounded edges, square cross-section common.
Zircon	tr	

Texture: Very large grains of quartz elongate parallel to foliation, interlobate to rounded edges with inclusions of the other minerals. Biotite inclusions are small and oriented parallel to foliation. Plagioclase occurs mostly as rounded small to medium grains within and inbetween the quartz. Clumps or aggregates of plagioclase + hematite + muscovite + biotite + garnet etc occur in two places between the quartz grains. Biotite and garnet are both altering to chlorite and plagioclase is altering to sericite.

Facies (equilibrium assemblage):

Plagioclase-Quartz-Biotite Muscovite possibly secondary

Sample: 1MT34 / 162KS78

Sample: 1MT34	/ 162]	KS78
Hand Specimen:		Amphibolite
Grain Size:		0.1-3mm
Color:		Black
Texture:		Foliated with a quartz feldspar layer bent back on itself,
		more properly a lineation then.
Mineral %:		Hornblende 50%
		Plagioclase 40
		Quartz 10
		Garnet tr
Thin Section:		
Drawing:		
Mineral	%	Properties:
Quartz		Unrecognizable in thin section, present on etched chip.
Plagioclase	25	Twinning common, sericite moderate to extensive.
		Deformed twins.
Sericite	10	Alteration in plagioclase.
Hornblende	60	α yellow, β brown, γ brown to green/brown. Blue-green
		near garnet Crystals zoned
		along long axis, olive in core,
		light blue-green near edges.
Garnet	2	Pinkish, poikilitic, wormy
		intergrowths. Hornblende is blue-green in the presence of
		garnet and there are disequilibrium textures present.
Diopside	1	$Z^C \sim 39^\circ$, $\gamma - \alpha$ 0.025, 2V50-60°(+), colorless, RI 1.67-
Diopside	1	1.68~
Epidote	1	$\gamma - \alpha$ 0.021, Z ^C 23°, high relief, colorless, anomalous bleu
Lpidote	1	γ - α 0.021, 2 C23, high refici, coloriess, anomalous of colors, $2V$ >50°(-), twinned.
Magnetite	tr	Opaque, shiny in reflected light.
Apatite	tr	Opaque, sinny in reflected right.
Biotite	tr	Vallendard this meetles Associated with some to In
Biotite	tr	Yellow/red, thin needles. Associated with garnet? In
		hornblende.
Texture:	Sorio	te, no preferred orientation of hornblende crystals. Numerous
Texture.		iv intergrowths of plagioclase into hornblende and garnet
		ate disequilibrium. Also the hornblende has a different color
		1
		e presence of the garnet. Normally olive green to brown, it is
		green to green near garnet.

There is a plagioclase-rich ptygmatic fold present with associated epidote and hornblende altering (?) to diopside. The hornblende is again a light blue-green to green, not the normal olive green to brown. Extensive sericite alteration in the plagioclase and in one place the twins look deformed.

Facies (equilibrium assemblage):

nada

Sample: 1MT35 / 163KS78

Hand Specimen:	Diopside Garn	et Hornblende Plagioclase Gneiss
Grain Size:	1-3mm	
Color:	Grey-black.	
Texture:	Strongly linea	ted, defined by hornblende crystals and
	plagioclase st	reaks. Hornblende crystals only slightly
	longer than the	ey are wide but definitely lineated.
Mineral %:	Plagioclase	50% +
	Hornblende	50 -
	Garnet	tr

Thin Section: Cut normal to lineation.

Drawing:		
Mineral	%	Properties:
Plagioclase	50	Uniform and twinned, some zoning, very minor sericite.
Garnet	10	Pinkish, sieve to massive, numerous wormy intergrowths
		and disequilibrium textures with hornblende.
Hornblende	35	α – γ pale green, β –olive green brown., γ -green.
Diopside	5	2V50-60° (+), Re 0.025-0.026, colorless, γ–α
Hematite	tr	
Apatite	tr	
Biotite	tr	Yellow/red pleochroism, looks like an alteration mineral.
Diopside Hematite Apatite	5 tr tr	α–γ pale green, β –olive green brown., γ-green. 2V50-60° (+), Re 0.025-0.026, colorless, γ–α

Texture: Seriate grain size, hornblende grains largest. Plagioclase crystals mostly equant with common 120° triple junctions. Hornblende equant to elongate, mostly end or nearly end sections. An euhedral, in equilibrium with diopside but possibly not in equilibrium with garnet. Garnet grains are massive to sieve textured, generally they are very irregular in shape with wormy intergrowths separations from hornblende. Hornblende and garnet are in contact elsewhere.
Diopside plus garnet are in equilibrium as evidenced by grains in contact and in one place at least there is a 120° boundary between two diopside and a garnet grain, sharp contact. NO Quartz.

Facies (equilibrium assemblage):

Plagioclase-Hornblende-Diopside-Garnet?

Sample: 1MT36 / 172KS78

Sample: INT 50) / 1 / 2 NS	0/0						
Hand Specimen:		Pegmatite						
Grain Size:		3mm to sev	eral ci	n				
Color:		Pink						
Texture:		Pegmatite, some associ				ally in	ito k-spa	ar with
Mineral %:		Qtz		20%				
		Plagioclase		5				
		K-spar		75				
		Muscovite		tr				
Thin Section:								
Drawing:	Magnifi	cation:						
Mineral	% P	roperties:						
Quartz	20 S	trained, edge	es smo	oth to loba	ate			
Plagioclase	5 C	One zoned putward, rou winning pres	large inded	crystal crystals to	with aggreg	-		U
K-spar	75 C	One large cry	stal, n	inor fracti	uring an	d defe	cts.	
Muscovite	tr C	In four fractu	ares ar	id larger ci	rystals a	associa	ted with	quartz.
Texture:	Graphic	intergrowth	s of s	trained qu	artz in	K-spar	: Plagio	clase is

Texture: Graphic intergrowths of strained quartz in K-spar. Plagioclase is twinned, zoned and contains some Mymerkite.

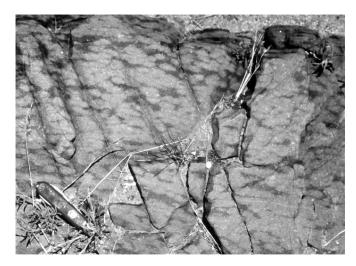
Facies (equilibrium assemblage):

Plagioclase-Quartz-K-spar-Muscovite

Sample: 1MT38 / 223KS78

Sample: INT 58		
Hand Specimen: Grain Size:		Hypersthene, Garnet, Quartz Granulite
Color:		
Texture:		0/
Mineral %:		0⁄0
Thin Section:		
Drawing:		
Mineral	%	Properties:
Quartz	35	Strained.
Garnet	42	Poikilitic (randomly placed) grains up to 4mm.
Hypersthene	17	γ :Z-17°, δ =0.038 \rightarrow gives flash figure. α colorless, β
9 1		$2V \sim 80-85(-)$, γ pale tan. Twinning very common.
Magnetite	tr-1	Opaque, shiny.
Zircon	tr	Rounded grains, high δ .
Hematite	5	Magnetite \rightarrow Hematite. Stain in-between grains.
Texture:	Dornh	yroblastic grains up to 4mm with randomly dispersed quartz
Texture.		s (plus one zircon) within. Massive, granulitic, 120° grain
	juncti	ons between quartz grains common. Hypersthene is very
	twinn	ed and shows extention to 17° due to strain.
	-	etite is interstitial, commonly "prismatic", rims garnets and
		ering to hematite. Hematite is common interstitially and
	gives	the weathered rock a red color.

Facies (equilibrium assemblage): Hypersthene zone


Sample: 1MT40 / 316KS78

Sample. INT 40	/ 5101	
Hand Specimen:		Marble
Grain Size:		0.1-3mm
Color:		Grey.
Texture:		Massive, speckled with calc-silicate. Minerals diopside
		and a dark mineral (chlorite?).
Mineral %:		%
Thin Section:		
Drawing:		
Mineral	%	Properties:
Calcite	85	Slow ray bisects the acute cleavage angle.
Chlorite	1-2	Alteration of diopside, green to olive, fibrous, parallel
		extinction.
D'	4. I	
Diopside	tr-1	Rounded grains, fractured. δ 0.020 colorless, moderate to
		high relief.
Phlogopite	tr	Colorless to tan, micaceous.
Graphite	tr	Opaque, dusty, interstitial.
Hydrogossome	r tr	High relief, lack of cleavage, isotropic.
Serpentine	14	Green to pale yellow, not pleochloric.
Serpentine	14	Green to pute yenow, not precentorie.

Texture:

Facies (equilibrium assemblage):

Sample: 1MT42 / 294K878 Hand Specimen: Hornblende-Hypersthene spotted Granulite

Grain Size: Color: Texture: Mineral %:	Fine Brown spotted, black interstitial. Large oval brown spots (2-4cm) dominate, in-between is a black weathering matrix. The long dimention of the spots are aligned parallel to foliation. In places trhe spots almost coalesce. Hypersthene 80-90% tan
Winteral 70.	Hornblende 10-20 black
Thin Section:	
Drawing:	
Mineral	% Properties:
Hornblende	52 2V $85^{\circ}(+)$, BxA(+). α pale green to colorless, β green brown, γ green. δ =0.029, γ :Z=19°. Amphibole cleavage, relief moderate ~1.65.
Hypersthene	35 $2V\sim60-65^{\circ}(-)$. Pinkish to colorless. δ 0.020, γ Z=11, moderate to high relief.
Magnetite	1 Opaque, shiny in reflected light.
Spinel?	tr Dark olive brown, nearly opaque.
Texture:	No real reaction textures. Hypersthene crystals are aligned crystalligraphically to one another. Hypersthene with relect hornblende cores and inclusions. Both hornblende and hypersthenes show common 120° grain boundaries of recrystallization. Granulitic, no preferred orientation, larger hypersthenes grains contain hornblende poikiolitically. Hornblende \rightarrow Hypersthene.

Hornblende and hypersthenes are in equilibrium, hornblende is out of equilibrium with quartz. So: Hornblende + Quartz \rightarrow Hypersthene

Facies (equilibrium assemblage): Hornblende-Hypersthene

Sample: 1MT77? / 77KS78

	Biotite-Bearing Quartzofeldspathic Gneiss		
	0.1 - 0.5 mm		
	Pink to grey		
	Foliated or lineated (difficult to tell) as defined by biotite		
	flakes and elongation of quartz grains. Fine grained and		
		otite gives this rock a speckeled look. It it	
	cut by a pegmat	ite vein.	
	Biotite	10%	
	K-spar	30	
	Plagioclase	30	
	Quartz	30	
%	Properties:		
35	Slightly strained.		
25	RI ~ 1.55, 2V near 90 $^{\circ}$ (pos?). Albite twinning not		
	common but present. No sericite.		
	Gridiron twinning prominant.		
5	Yellow to black.		
tr	Square end section	n gives unaxial (+) figure, high relief.	
tr	Hexagonal end see	ctions, low $\gamma - \alpha$.	
Fine grained, weakly foliated or lineated. Equant grains. Seriate			
grain size distribution, but none get very large. Some of the larger			
grains of quartz or plagioclase tend to be ameboidal. Mostly			
locking or rounded grains.			
	% 35 25 5 tr tr Fine grain grains	 0.1 – 0.5 mm Pink to grey Foliated or linea flakes and elong granular, the bio cut by a pegmat Biotite K-spar Plagioclase Quartz % Properties: 35 Slightly strained. 25 RI ~ 1.55, 2V to common but prese 25 Gridiron twinning 5 Yellow to black. tr Square end section tr Hexagonal end sec Fine grained, weakly fol grain size distribution, but 	

Facies (equilibrium assemblage): Plagioclase-K-spar-Quartz-Biotite

Appendix 8: Strike and Dip data by station

<u>a</u> .		1.	1.
Sta	strike	dip	dir
1	177	44	NE
1	152	19	V
4	90	45	Ν
37	45	41	NW
38	165	43	NE
39	110	50	NE
40	15	45	NW
41	40	44	NW
42	5	56	Е
43	17	75	SE
44			
	180	74	E
46	50	85	Е
47	23	90	
48	25	90	
49	72	72	SE
50	175	77	Е
51	45	78	SE
52	10	50	NW
53	5	68	SE
54	178	81	W
55	130	49	NE
56	130	72	SW
58	153	51	NE
59	174	64	SW
61	110	55	NE
62	74	34	NW
	103	46	NE
63			
64	95	60	N
70	76	51	NW
71	96	62	NE
72	120	75	NE
73	97	81	NE
74	81	90	
81	133	65	NE
82	98	80	NE
82 83			
	134	56	SW
84	110	70	NE
85	94	57	NE
87	103	39	NE
89	28	76	NW
90	96	70	NE
92	73	74	NW
93	110	42	NE
95 95	73	42 84	NW
96	0	56	Е

97	167	82	E
98	164	63	E
101	86	69	N
103	75	78	NW
104	103	82	NE
105	5	87	E
107	23	76	SE
108 111 111	23 135 135	68 68 90	SE SW
112	5	79	W
116	87	62	N
118	105	56	NE
119	88	47	N
121	123	58	NE
122	126	78	NE
124	5	90	SE
125	36	84	
126	10	78	SE
126	25	81	SE
126	25	72	SE
129 130 132	55 65 29	90 78 76	SE SE
133 133 134	52 52 35	74 90 63	N SE
135	43	90	SE
136	43	78	
138	45	90	
139	42	77	SE
142	68	65	NW
143	44	84	SE
144	68	74	SE
145	42	84	SE
146 147 149	63 37 39	72 72 90	SE SE
150	47	84	SE
151	16	67	SE
152	18	84	SE
154	111	79	NE
156	170	81	E
157	159	74	E
158	4	76	E
159	148	54	NE
160	175	62	E
161	5	66	E

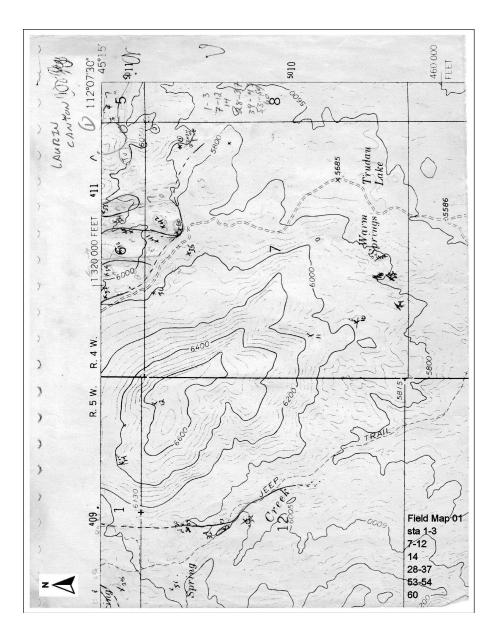
162	11	69	Б
			Е
163	42	74	SE
164	53	51	SE
166	141	82	Е
167	169	77	Е
168	154	77	Е
169	151	79	Е
170	174	90	
171	38	84	SE
174	44	77	SE
175	21	82	SE
176	36	80	NW
			1 8 99
177	7	90	
178	38	70	SE
179	43	77	SE
180	38	81	SE
181	36	65	SE
182	54	90	
			Б
187	18	70	Е
189	4	90	
190	67	90	
			г
191	166	78	Е
192	165	73	Е
193	170	69	Е
196	35	74	SE
197	48	83	SE
199	152	86	Е
200	154	84	Е
201	23	90	
203	44	78	NW
204	50	85	E
205	57	82	SE
206	52	82	SE
208	62	90	
			a F
209	41	85	SE
210	49	90	
211	58	90	
			CIII.
212	101	85	SW
213	77	79	SE
215	29	90	
			CE
216	55	85	SE
217	3	62	Е
218	54	85	SE
219	35	79	SE
221	95	75	Ν
224	76	85	SE
	40		
225		81	SE
226	39	85	SE

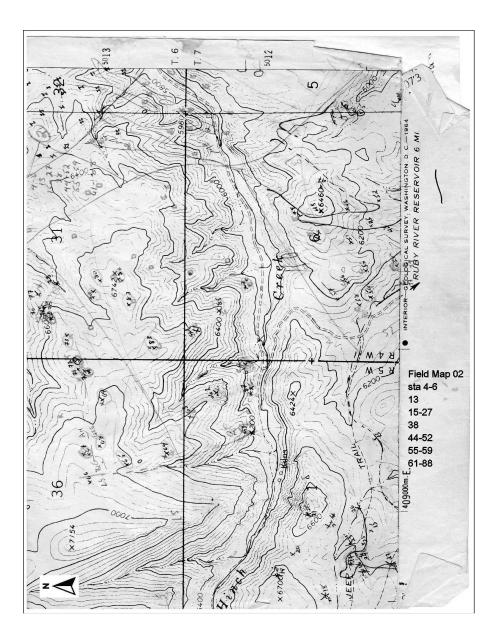
227	44	80	SE
228	41	90	
229	38	85	SE
230	57	73	SE
232	56	90	
233	113	75	NE
234	3	61	E
236	73	90	
237	51	70	NW
239	5	85	E
240	15	84	Ē
240			
	25	80	SE
242	17	85	E
245	28	90	
246	178	75	E
248	124	63	SW
249	51	87	SE
250	141	60	NE
251	108	60	N
252	16	85	SE
253	8	61	E
254	15	80	E
256	139	83	Е
259	10	90	
259	153	68	NE
260	174	80	Е
261	169	85	Ē
262	175	70	Ē
262	19	90	L
			Б
265	179	80	Е
266	108	90	
267	177	65	W
268	24	85	SE
270	177	90	
272	7	90	
273	23	65	SE
274	5	65	Е
275	148	80	NE
		56	
276	136		NE
277	145	52	NE
278	5	90	
278	156	58	NE
280	149	38	NE
282	15	61	E
283	136	81	NE
284	170	80	Е
286	13	72	Ē
288	58	90	2
200	50	70	

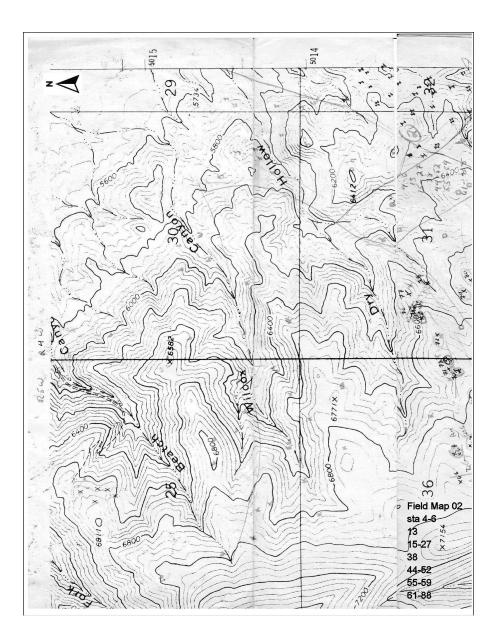
289	39	81	SE
290	62	75	NW
291	12	90	
293	140	85	NE
294	24	84	SE
295	8	75	E
296	160	68	NE
297	145	67	NE
299	128	78	NE
300	101	90	
301	122	63	NE
303	26	70	SE
304	60	62	SE
305	101	57	SW
306	129	90	
			NIE
309	172	68	NE
310	178	49	NE
311	163	53	NE
312	7	54	E
313	176	78	E
314	41	85	E
315	169	75	Е
316	178	64	Ē
317	158	50	E
318	171	65	Е
318	171	90	
			Б
319	127	61	E
320	81	85	Ν
321	50	90	
322	43	78	NW
323	73	65	NW
325	84	69	Ν
326	76	90	
327	101	53	Ν
329	64	80	NW
			IN W
330	105	90	
331	83	83	Ν
332	85	85	Ν
333	133	90	11
334	134	78	NE
339	48	90	
340	75	84	NW
342	113	75	NE
343	73	60	NW
344	172	52	Е
345	25	40	SE
346		55	
	175		E
351	111	64	NE

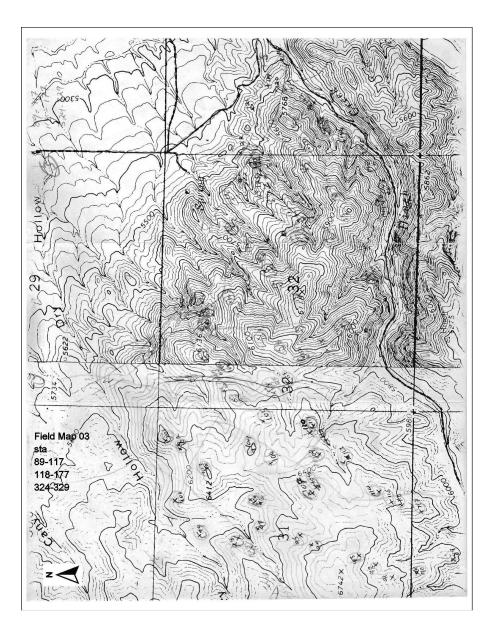
352 353 354 355 356 357 358 362	66 119 50 104 158 140 168 46	90 45 55 60 48 50 90 90	NE NW NE NE NE
363 367 368 369	146 139 141 178	52 57 81 90	NE NE NE
370 371 374 375	76 173 55 74	60 67 70 90	N W NW
379 380 387 388	33 22 66 106	55 65 80 69	SE SE NW NE
389 390 391 392	92 97 111 97	80 90 76 62	N NE N
393 395 396 397	84 70 83 94	80 65 85 79	N SE S S
398 399 400 401	87 61 79 123	85 84 90 75	S SE NE
402 403 403 405	97 83 94 67	87 90 85	N S N
406 408 409	92 66 95	80 85 90 87	N N
410 411 412 413 414	7 33 47 60 87	80 72 64 65 80	E SE SE SE N
415 416 417 418	88 95 96 68	90 73 57 61	N N NW

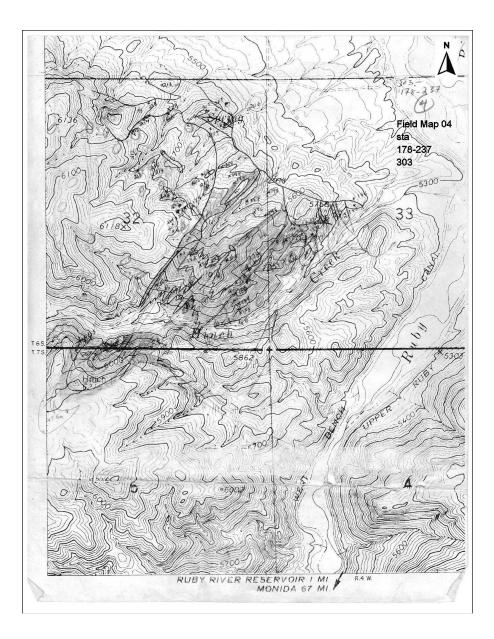
419 421 422	43 21 170	81 76 71	SE SE E
423	3	56	E
424	8	79	Е
425	76	90 95	C.F.
426	53	85 74	SE NW
427 428	64 77	74 73	NW
420	66	80	NW
430	53	72	NW
431	74	68	N
432	95	80	S
434	91	90	2
435	97	65	S
436	57	73	SE
437	63	80	SE
439	31	79	SE
440	46	79	SE
441	39	68	SE
442	47	81	SE
443	42	78	SE
444	14	81	Е
445	72	90	
446	72	76	NW
447	43	65 76	SE
448	47	76	SE
449 457	29 92	81 81	N N
458	92 77	80	N
459	89	85	S
460	90	90	5
462	96	69	S
463	105	87	Ñ
465	151	68	NE
466	9	85	Е
468	0	56	Е
469	8	75	Е
470	3	46	Е
473	19	58	Е
474	136	34	NE
477	27	53	E
478	120	56	NE
479	102	34	N
480	114	85 24	S
481	94 04	24 56	N N
482	94 62	56	Ν
483	62	90	

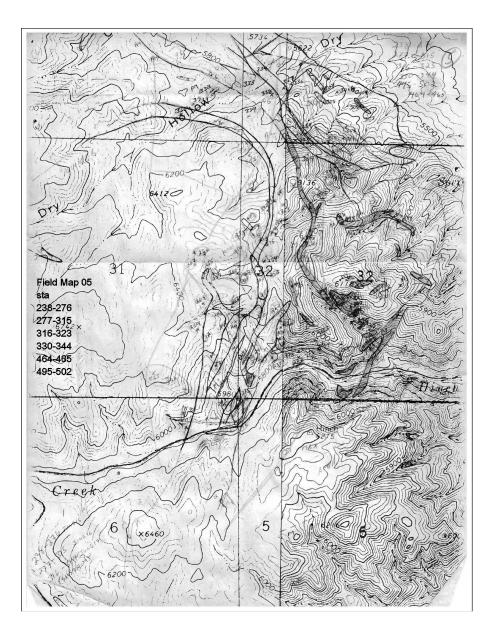

484	78	74	Ν
485	87	51	Ν
486	3	86	Е
487	50	85	NW
488	106	75	S
489	90	90	
490	75	85	S
491	58	78	S
492	100	75	Ν
493	27	75	NW

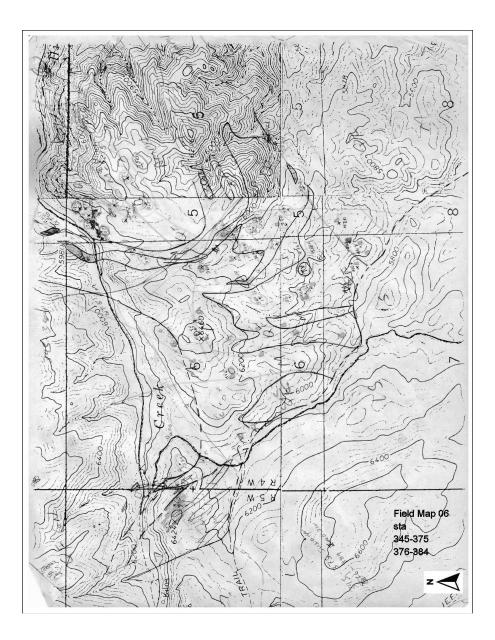

Appendix 9: Single domain Structural Analysis (3/2021)

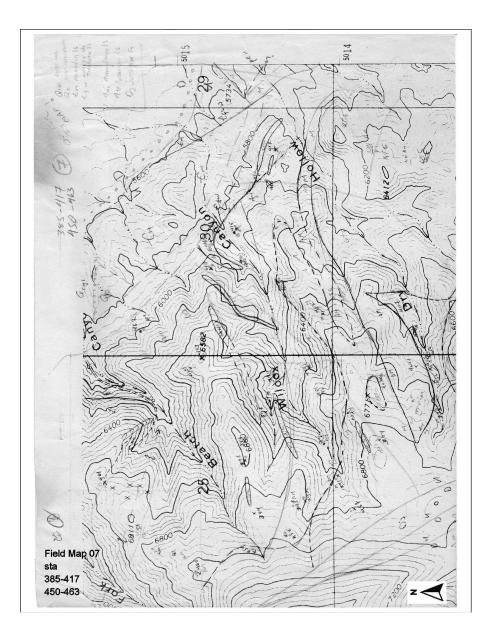


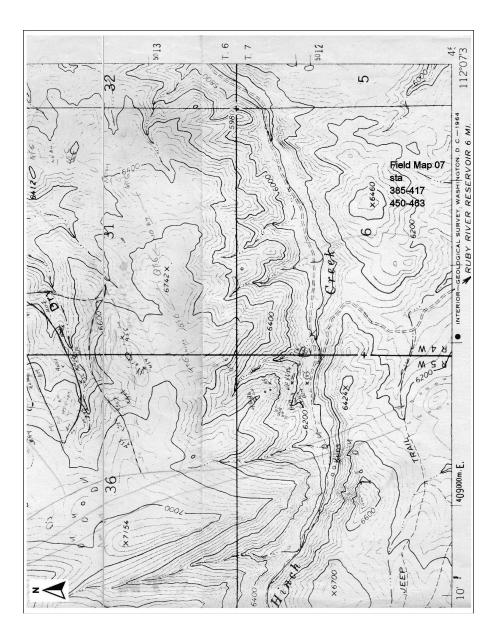

Best fit great circle (strike, dip RHR) = 145.8, 22.0

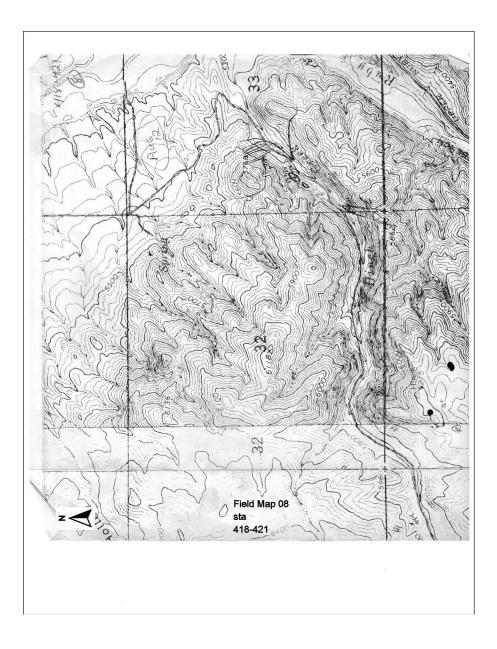

Appendix 10: Field Work Maps with stations

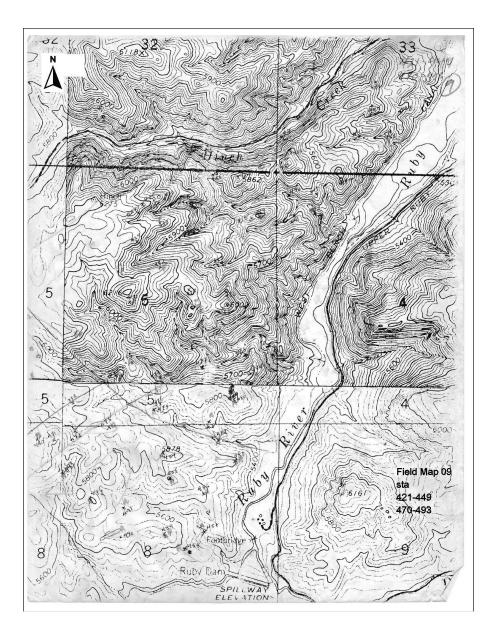












Hinch Creek Study Area:

